Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Muyan Wu, Yingguang Zhang, Haibao Huang, Dennis Y.C. Leung. Mechanistic study of vacuum UV catalytic oxidation for toluene degradation over CeO2 nanorods. Green Energy&Environment, 2022, 7(3): 533-544. doi: 10.1016/j.gee.2020.11.002
Citation: Muyan Wu, Yingguang Zhang, Haibao Huang, Dennis Y.C. Leung. Mechanistic study of vacuum UV catalytic oxidation for toluene degradation over CeO2 nanorods. Green Energy&Environment, 2022, 7(3): 533-544. doi: 10.1016/j.gee.2020.11.002

Mechanistic study of vacuum UV catalytic oxidation for toluene degradation over CeO2 nanorods

doi: 10.1016/j.gee.2020.11.002
  • The present study specifically investigates vacuum ultraviolet (VUV) catalytic oxidation for toluene degradation over CeO2 nanorods. Synergetic effects of ultraviolet photocatalytic oxidation (UV-PCO) and ozone catalytic oxidation (OZCO) were manifested in the results of toluene removal and COx generation, while the combination of UV-PCO and OZCO (UV-OZCO) did not lead to improvement of mineralization. All the processes contribute to ozone decomposition, but no obvious synergetic effects of the different processes can be observed. Intermediate analysis results indicated that more toluene was oxidized into by-products, such as benzyl alcohol and benzaldehyde, by UV-OZCO rather than forming COx. Both hydroxyl radical (·OH) and superoxide radical (·O2) were found in all the processes of the VUV-PCO-OZCO system (combination of VUV photolysis, UV-PCO, OZCO and UV-OZCO processes). In the UV-OZCO process, the formation of hydroxyl radical was promoted, while that of superoxide radical was impeded, resulting in lower mineralization level of toluene. The mechanistic study of toluene degradation over CeO2 nanorods in the VUV-PCO-OZCO system revealed that with the formation of ·O2 and ·OH, toluene is first oxidized to intermediates, followed by further ring-opening reaction and, finally, degradation into CO2 and H2O. CeO2 nanorods function as both ozonation catalyst and photocatalyst, and the redox pair of Ce3+ and Ce4+ are interconvertible and can keep a balance.

     

  • loading
  • [1]
    J. Kong; Z. Xiang; G. Li; T. An, Applied Catalysis B:Environmental 269 (2020) 118755.
    [2]
    X. Wang; M. Sun; M. Murugananthan; Y. Zhang; L. Zhang, Applied Catalysis B:Environmental 260 (2020) 118205.
    [3]
    M.S. Kamal; S.A. Razzak; M.M. Hossain, Atmospheric Environment 140 (2016) 117-134.
    [4]
    J. Zhao; W. Xi; C. Tu; Q. Dai; X. Wang, Applied Catalysis B:Environmental 263 (2020) 118237.
    [5]
    D. Xia; W. Xu; Y. Wang; J. Yang; Y. Huang; L. Hu; C. He; D. Shu; D.Y. Leung; Z. Pang, Environmental science & technology 52 (2018) 13399-13409.
    [6]
    G. Chen; Z. Wang; F. Lin; Z. Zhang; H. Yu; B. Yan; Z. Wang, Journal of Hazardous Materials 391 (2020) 122218.
    [7]
    D. Xia; L. Hu; Y. Wang; B. Xu; Y. Liao; C. He; L. Ye; X. Liang; Y. Ye; D. Shu, Applied Catalysis B:Environmental 256 (2019) 117811.
    [8]
    H. Zhou; Z. Wen; J. Liu; J. Ke; X. Duan; S. Wang, Applied Catalysis B:Environmental 242 (2019) 76-84.
    [9]
    G. Liu; J. Ji; H. Huang; R. Xie; Q. Feng; Y. Shu; Y. Zhan; R. Fang; M. He; S. Liu, Chemical Engineering Journal 324 (2017) 44-50.
    [10]
    R. Xie; J. Ji; K. Guo; D. Lei; Q. Fan; D.Y. Leung; H. Huang, Chemical Engineering Journal 356 (2019) 632-640.
    [11]
    F. Zhang; B. Hong; W. Zhao; Y. Yang; J. Bao; C. Gao; S. Sun, Chemical Communications 55 (2019) 3757-3760.
    [12]
    J. Ji; Y. Xu; H. Huang; M. He; S. Liu; G. Liu; R. Xie; Q. Feng; Y. Shu; Y. Zhan, Chemical Engineering Journal 327 (2017) 490-499.
    [13]
    Y. Shu; Y. Xu; H. Huang; J. Ji; S. Liang; M. Wu; D.Y. Leung, Chemosphere 208 (2018) 550-558.
    [14]
    T. Xu; H. Zheng; P. Zhang, Building and Environment 142 (2018) 379-387.
    [15]
    H. Huang; H. Huang; Y. Zhan; G. Liu; X. Wang; H. Lu; L. Xiao; Q. Feng; D.Y. Leung, Applied Catalysis B:Environmental 186 (2016) 62-68.
    [16]
    S. Liang; Y. Shu; K. Li; J. Ji; H. Huang; J. Deng; D.Y. Leung; M. Wu; Y. Zhang, Journal of Hazardous Materials (2020) 122967.
    [17]
    M. Wu; Y. Zhang; W. Szeto; W. Pan; H. Huang; D.Y. Leung, Chemical Engineering Science 200 (2019) 203-213.
    [18]
    H. Huang; H. Huang; L. Zhang; P. Hu; X. Ye; D.Y. Leung, Chemical Engineering Journal 259 (2015) 534-541.
    [19]
    M. Wu; D.Y. Leung; Y. Zhang; H. Huang; R. Xie; W. Szeto; F. Li, Chemical Engineering Science 195 (2019) 985-994.
    [20]
    A.M. Mihalatos; A.C. Calokerinos, Analytica chimica acta 303 (1995) 127-135.
    [21]
    J. Van Durme; J. Dewulf; W. Sysmans; C. Leys; H. Van Langenhove, Chemosphere 68 (2007) 1821-1829.
    [22]
    Y. Shu; M. He; J. Ji; H. Huang; S. Liu; D.Y. Leung, Journal of hazardous materials 364 (2019) 770-779.
    [23]
    I. Suh; D. Zhang; R. Zhang; L.T. Molina; M.J. Molina, Chemical physics letters 364 (2002) 454-462.
    [24]
    Y. Ji; J. Zhao; H. Terazono; K. Misawa; N.P. Levitt; Y. Li; Y. Lin; J. Peng; Y. Wang; L. Duan, Proceedings of the National Academy of Sciences 114 (2017) 8169-8174.
    [25]
    S. Afzal; X. Quan; S. Lu, Applied Catalysis B:Environmental 248 (2019) 526-537.
    [26]
    B. Legube; N.K.V. Leitner, Catalysis today 53 (1999) 61-72.
    [27]
    M. Pinheiro Da Silva; L. Soeira; K. Daghastanli; T. Martins; I. Cuccovia; R. Freire; P. Isolani, Journal of thermal analysis and calorimetry 102 (2010) 907-913.
    [28]
    A. Torres-Pinto; M.J. Sampaio; C.G. Silva; J.L. Faria; A.M. Silva, Applied Catalysis B:Environmental 252 (2019) 128-137.
    [29]
    O. Osegueda; A. Dafinov; J. Llorca; F. Medina; J. Sueiras, Chemical Engineering Journal 262 (2015) 344-355.
    [30]
    S. Na; C. Jinhua; M. Cui; J. Khim, Ultrasonics sonochemistry 19 (2012) 1094-1098.
    [31]
    L. Yang; Z. Liu; J. Shi; Y. Zhang; H. Hu; W. Shangguan, Separation and Purification Technology 54 (2007) 204-211.
    [32]
    B.H.J. Bielski, in:L. Packer (Ed.), Methods in Enzymology, Elsevier B.V., Amsterdam, 1984, pp. 81-88.
    [33]
    H. Ren; P. Koshy; W.-F. Chen; S. Qi; C.C. Sorrell, Journal of Hazardous Materials 325 (2017) 340-366.
    [34]
    D. Channei; B. Inceesungvorn; N. Wetchakun; S. Ukritnukun; A. Nattestad; J. Chen; S. Phanichphant, Scientific reports 4 (2014) 5757.
    [35]
    S. Banerjee; S.C. Pillai; P. Falaras; K.E. O'shea; J.A. Byrne; D.D. Dionysiou, The journal of physical chemistry letters 5 (2014) 2543-2554.
    [36]
    B.M. Da Costa Filho; G.V. Silva; R.A. Boaventura; M.M. Dias; J.C. Lopes; V.J. Vilar, Science of the total environment 687 (2019) 1357-1368.
    [37]
    K. Bulanin; J. Lavalley; J. Lamotte; L. Mariey; N. Tsyganenko; A. Tsyganenko, The Journal of Physical Chemistry B 102 (1998) 6809-6816.
    [38]
    M. Zhang; B. Jin; Y. Liu; W. Liu; D. Weng; X. Wu; S. Liu, Chemical Engineering Journal 375 (2019) 121961.
    [39]
    J. Xiao; Y. Xie; H. Cao; Y. Wang; Z. Zhao, Catalysis Communications 66 (2015) 10-14.
    [40]
    X. Huang; J. Yuan; J. Shi; W. Shangguan, Journal of hazardous materials 171 (2009) 827-832.
    [41]
    Z. Pengyi; L. Fuyan; Y. Gang; C. Qing; Z. Wanpeng, Journal of Photochemistry and Photobiology A:Chemistry 156 (2003) 189-194.
    [42]
    C.F. Chignell; A.G. Motten; R.H. Sik; C.E. Parker; K. Reszka, Photochemistry and photobiology 59 (1994) 5-11.
    [43]
    O. D'hennezel; P. Pichat; D.F. Ollis, Journal of Photochemistry and Photobiology A:Chemistry 118 (1998) 197-204.
    [44]
    M. Sleiman; P. Conchon; C. Ferronato; J.-M. Chovelon, Applied Catalysis B:Environmental 86 (2009) 159-165
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (250) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return