Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Yan-Bing Li, Hui-Ying Guo, Chen-Qiang Deng, Jin Deng. Synthesis of dihydrocapsaicin and dihydrocapsiate exclusively from lignocellulosic platform chemicals. Green Energy&Environment, 2022, 7(3): 519-524. doi: 10.1016/j.gee.2020.11.001
Citation: Yan-Bing Li, Hui-Ying Guo, Chen-Qiang Deng, Jin Deng. Synthesis of dihydrocapsaicin and dihydrocapsiate exclusively from lignocellulosic platform chemicals. Green Energy&Environment, 2022, 7(3): 519-524. doi: 10.1016/j.gee.2020.11.001

Synthesis of dihydrocapsaicin and dihydrocapsiate exclusively from lignocellulosic platform chemicals

doi: 10.1016/j.gee.2020.11.001
  • Biorefinery is pivotal to the sustainability of modern chemical industry. However, since biomass is oxygen-enriched, new and green chemical strategies are required for expanding the biomass derived chemical space. In this work, synthesis of natural products dihydrocapsaicin and dihydrocapsiate was achieved exclusively from lignocellulosic platform chemicals. Natural products dihydrocapsaicin and dihydrocapsiate were synthesized exclusively from lignocellulosic platform chemicals, using furfural (from hemicellulose) and methyl isopropyl ketone (from cellulose) through aldol condensation-hydrolysis-hydrodeoxygenation to synthesize 8-methylnonanoic acid and then combined with vanillin derivates (from lignin). This synthesis demonstrates the feasibility of constructing natural products entirely from renewable biomass platform through green processes. The utilization of inherent functional groups of biomass demonstrates their potential to open up chemical space.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    C. Li; X. Zhao; A. Wang; G. Huber; T. Zhang, Chem. Rev. 115(2019) 11559-11624.
    [2]
    Z. Zhang; J. Song; B. Han, Chem. Rev. 117(2017) 6834-6880.
    [3]
    Z. Sun; K. Barta, Chem. Commun., 54(2018) 7725-7745.
    [4]
    P. Vennestrom; C. Osmundsen; C. Christensen; E. Taarning, Angew. Chem. Int. Ed. 50(2011) 10502-10509.
    [5]
    D. Esposito; M. Antonietti, Chem. Soc. Rev. 44(2015) 5821-5835.
    [6]
    N. Brun; P. Hesemann; D. Esposito, Chem. Sci. 8(2017) 4724-4738.
    [7]
    X. Zhang; K. Wilson; A. Lee, Chem. Rev. 116(2016) 12328-12368.
    [8]
    Z. Zhang; G. Huber, Chem. Soc. Rev. 47(2018) 1351-1390.
    [9]
    T. Buntara; S. Noel; P. Phua; I. Cabrera; J. de Vries; H. Heeres, Angew. Chem. Int. Ed. 50(2011) 7083-7087.
    [10]
    J. Julis; W. Leitner, Angew. Chem. Int. Ed. 51(2012) 8615-8619.
    [11]
    R. Lu; F. Lu; J. Chen; W. Yu; Q. Huang; J. Zhang; J. Xu, Angew. Chem. Int. Ed. 55(2016) 249-253.
    [12]
    J. Kuhlborn; J. Gross; T. Opatz, Nat. Prod. Rep. 2019 10.1039/C9NP00040B.
    [13]
    D. Stubba; G. Lahm; M. Geffe; J. Runyon; A. Arduengo III; T. Opatz, Angew. Chem. Int. Ed. 54(2015) 14187-14189.
    [14]
    P. Koh; T. Loh, Green Chem. 17(2015) 3746-3750.
    [15]
    X. Luo; J. Peng; Y. Li, Eur. J. Pharmacol. 650(2011) 1-7.
    [16]
    R. Sancho; C. Lucena; A. Macho; M. Calzado; M. Blanco-Molina; A. Minassi; G. Appendino; E. Munoz, Eur. J. Immunol. 32(2002) 1753-1763.
    [17]
    A. Macho; C. Lucena; R. Sancho; N. Daddario; A. Minassi; E. Munoz; G. Appendino, Eur. J. Nutr. 42(2003) 2-9.
    [18]
    I. Vermaak; A. Viljoen; J. Hamman, Nat. Prod. Rep. 28(2011) 1493-1533.
    [19]
    M. Lu; Y. Cao; J. Xiao; M. Song; C. Ho, Food Funct. 9(2018) 4569-4581.
    [20]
    T. Iwasaki; K. Higashikawa; V. Reddy; W. Ho; Y. Fujimoto; K. Fukase; J. Terao; H. Kuniyasu; N. Kambe, Chem. Eur. J. 19(2013) 2956-2960.
    [21]
    P. Gannett; D. Nagel; P. Reilly; T. Lawson; J. Sharpe; B. Toth, J. Org. Chem. 53(1988) 1064-1071.
    [22]
    M. Xiong; J. Deng; A. Woodruff; M. Zhu; J. Zhou; S. Park; H. Li; Y. Fu; K. Zhang, Sci. Rep. 2(2012) 311.
    [23]
    A. Abeysekera; S. Amaratunge; J. Grimshaw; N. Jayeweera; G. Senanayake, J. Chem. Soc. Perkin Trans. 1(1991) 2021-2023.
    [24]
    X. Li; K. Zhang; J. Jiang; R. Zhu; W. Wu; J. Deng; Y. Fu, Green Chem. 20(2018) 362-368.
    [25]
    R. Braun; W. Mosher, J. Am. Chem. Soc. 80(1958) 4919-4921.
    [26]
    H. Szmant, Angew. Chem. Int. Ed. 7(1968) 120-128.
    [27]
    E. Martin, J. Am. Chem. Soc. 58(1936) 1438-1442.
    [28]
    E. Vedejs, Org. React. 22(1975) 401-422.
    [29]
    A. Volkov; K. Gustafson; C. Tai; O. Verho; J. Backvall; H. Adolfsson, Angew. Chem. Int. Ed. 54(2015) 5122-5126.
    [30]
    M. Mehta; M. Holthausen; I. Mallov; M. Perez; Z. Qu; S. Grimme; D. Stephan, Angew. Chem. Int. Ed. 54(2015) 8250-8254.
    [31]
    N. Kalutharage; C. Yi, J. Am. Chem. Soc. 137(2015) 11105-11114.
    [32]
    L. Marko; A. Bordet; G. Moos; S. Tricard; S. Rengshausen; B. Chaudret; K. Luska; W. Leitner, Angew. Chem. Int. Ed. 57(2018) 12721-12726.
    [33]
    T. Lohr; Z. Li; R. Assary; L. Curtiss; T. Marks, Energy Environ. Sci. 9(2016) 550-564.
    [34]
    R. Zhu; J. Jiang; X. Li; J. Deng; Y. Fu, ACS Catalysis 7(2017) 7520-7528.
    [35]
    R. Shannon, Acta Crystallogr. 32(1976) 751-767.
    [36]
    W. Miles; D. Ruddy; S. Tinorgah; R. Geisler, Synth. Commun. 34(2004) 1871-1880.
    [37]
    K. Zhang; X. Li; S. Chen; H. Xu; J. Deng; Y. Fu, ChemSusChem 11(2018) 726-734.
    [38]
    X. Liu; Y. Li; J. Deng; Y. Fu, Green Chem. 21(2019) 4532-4540.
    [39]
    B. Peng; J. Wang; Z. Peng; S. Zhou; F. Wang; Y. Ji; Z. Ye; X. Zhou; T. Lin; X. Zhang, Sci. China Chem. 55(2012) 435-442.
    [40]
    G. Barbero; J. Molinillo; R. Varela; M. Palma; F. Macias; C. Barroso, J. Agric. Food Chem. 58(2010) 3342-3349
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (288) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return