Hao Pang, Guoju Yang, Lin Li, Jihong Yu. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy&Environment, 2020, 5(4): 405-413. doi: 10.1016/j.gee.2020.10.024
Citation: Hao Pang, Guoju Yang, Lin Li, Jihong Yu. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy&Environment, 2020, 5(4): 405-413. doi: 10.1016/j.gee.2020.10.024

Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production

doi: 10.1016/j.gee.2020.10.024
  • Basic zeolites have shown great potential as efficient catalysts for biodiesel production in the transesterification reactions. However, conventional three-dimensional (3D) basic zeolites generally suffer from limited base sites and severe mass-transfer restriction, thereby suppressing their catalytic activity. Herein, 2D basic zeolites with large external surface areas, hierarchical characteristics, and abundant accessible and stable base sites are prepared by expansion, delamination and subsequent solid-state ion-exchange (SSIE) approach. The facile SSIE method provides more advantages in stabilizing and dispersing high concentration of strong basic sites than the conventional liquid-phase ion-exchange (LIE) approach. Due to the excellent mass transportation and stable basic sites, the 2D Na/ITQ-2 prepared by the SSIE approach shows remarkably enhanced activity and recyclability in the transesterification of triglycerides to produce biodiesel, compared to 3D zeolites and other reported basic zeolites. This work will open the boulevard to the rational design of 2D basic catalysts and expand the potential application of 2D zeolites to biodiesel production and other industrial reactions involving bulky molecules.

     

  • loading
  • [1]
    R. Luque, J.C. Lovett, B. Datta, J. Clancy, J.M. Campelo, A.A. Romero, Energy Environ. Sci. 3 (2010) 1706-1721.
    [2]
    L. Lin, C. Zhou, V. Saritporn, X. Shen, M. Dong, Appl. Energy 88 (2011) 1020-1031.
    [3]
    F. Su, Y.H. Guo, Green Chem.. 16 (2014) 2934-2957.
    [4]
    J.A. Melero, J. Iglesias, G. Morales, Green Chem.. 11 (2009) 1285-1308.
    [5]
    A.F. Lee, J.A. Bennett, J.C. Manayil, K. Wilson, Chem. Soc. Rev. 43 (2014) 7887-7916.
    [6]
    M. Fan, H. Wu, M. Shi, P. Zhang, P. Jiang, Green Energy Environ. 4 (2019) 322-327.
    [7]
    Z.I. Ishak, N.A. Sairi, Y. Alias, M.K.T. Aroua, R. Yusoff, Catal. Rev. 59 (2017) 44-93.
    [8]
    A. Gog, M. Roman, M. Tosa, C. Paizs, F.D. Irimie, Renew. Energy 39 (2012) 10-16.
    [9]
    Z. Amini, Z. Ilham, H.C. Ong, H. Mazaheri, W.-H. Chen, Energy Convers. Manag. 141 (2017) 339-353.
    [10]
    A. Demirbas, Energy Convers. Manag. 50 (2009) 14-34.
    [11]
    Z. Helwani, M.R. Othman, N. Aziz, J. Kim, W.J.N. Fernando, Appl. Catal., A 363 (2009) 1-10.
    [12]
    H. Hattori, Chem. Rev. 95 (1995) 537-558.
    [13]
    L.-B. Sun, X.-Q. Liu, H.-C. Zhou, Chem. Soc. Rev. 44 (2015) 5092-5147.
    [14]
    Y. Li, J. Yu, Chem. Rev. 114 (2014) 7268-7316.
    [15]
    Z. Wang, J. Yu, R. Xu, Chem. Soc. Rev. 41 (2012) 1729-1741.
    [16]
    N. Wang, Q. Sun, J. Yu, Adv. Mater. 31 (2019) 1803966.
    [17]
    G. Yang, S.A. Akhade, X. Chen, Y. Liu, M.-S. Lee, V.-A. Glezakou, R. Rousseau, J.A. Lercher, Angew. Chem. Int. Ed. 58 (2019) 3527-3532.
    [18]
    T. Ennaert, J. Van Aelst, J. Dijkmans, R. De Clercq, W. Schutyser, M. Dusselier, D. Verboekend, B.F. Sels, Chem. Soc. Rev. 45 (2016) 584-611.
    [19]
    P.A. Jacobs, M. Dusselier, B.F. Sels, Angew. Chem. Int. Ed. 53 (2014) 8621-8626.
    [20]
    P. Sudarsanam, E. Peeters, E.V. Makshina, V.I. Parvulescu, B.F. Sels, Chem. Soc. Rev. 48 (2019) 2366-2421.
    [21]
    Y. Wang, H. Chou, B. Chen, D. Lee, Bioresour. Technol. 145 (2013) 248-253.
    [22]
    Y. Wang, T. Dang, B. Chen, D. Lee, Ind. Eng. Chem. Res. 51 (2012) 9959-9965.
    [23]
    G.J. Suppes, M.A. Dasari, E.J. Doskocil, P.J. Mankidy, M.J. Goff, Appl. Catal., A 257 (2004) 213-223.
    [24]
    Z. Li, S. Ding, C. Chen, S. Qu, L. Du, J. Lu, J. Ding, Energy Convers. Manage. 192 (2019) 335-345.
    [25]
    L. Du, S. Ding, Z. Li, E. Lv, J. Lu, J. Ding, Energy Convers. Manage. 173 (2018) 728-734.
    [26]
    Y. Wang, B. Chen, Catal. Today 278 (2016) 335-343.
    [27]
    I. Lawan, Z.N. Garba, W. Zhou, M. Zhang, Z. Yuan, Renew. Energy 145 (2020) 2550-2560.
    [28]
    J. Prech, P. Pizarro, D.P. Serrano, J. Cejka, Chem. Soc. Rev. 47 (2018) 8263-8306.
    [29]
    D. Kerstens, B. Smeyers, J. Van Waeyenberg, Q. Zhang, J. Yu, B.F. Sels, Adv. Mater. (2020) https://doi.org/10.1002/adma.202004690.
    [30]
    P. Peng, Z.-F. Yan, S. Mintova, X.-H. Gao, Natl. Sci. Rev. (2020) https://doi.org/10.1093/nsr/nwaa1184.
    [31]
    A. Corma, V. Fornes, S.B. Pergher, T.L.M. Maesen, J.G. Buglass, Nature 396 (1998) 353.
    [32]
    W.J. Roth, P. Nachtigall, R.E. Morris, J. Cejka, Chem. Rev. 114 (2014) 4807-4837.
    [33]
    A. Corma, U. Diaz, M.E. Domine, V. Fornes, J. Am. Chem. Soc. 122 (2000) 2804-2809.
    [34]
    A. Macario, G. Giordano, B. Onida, D. Cocina, A. Tagarelli, A.M. Giuffre, Appl. Catal., A 378 (2010) 160-168.
    [35]
    C. Jia, P. Beaunier, P. Massiani, Microporous Mesoporous Mater. 24 (1998) 69-82.
    [36]
    H.G. Karge, H.K. Beyer, Stud. Surf. Sci. Catal. 69 (1991) 43-64.
    [37]
    M.K. De Pietre, F.A. Bonk, C. Rettori, F.A. Garcia, H.O. Pastore, Microporous Mesoporous Mater.. 145 (2011) 108-117.
    [38]
    M.D. Oleksiak, K. Muraoka, M.-F. Hsieh, M.T. Conato, A. Shimojima, T. Okubo, W. Chaikittisilp, J.D. Rimer, Angew. Chem. Int. Ed. 56 (2017) 13366-13371.
    [39]
    R.A. Beyerlein, C. Choi-Feng, J.B. Hall, B.J. Huggins, G.J. Ray, Top. Catal. 4 (1997) 27-42.
    [40]
    S. Rakmae, C. Keawkumay, N. Osakoo, K.D. Montalbo, R.L. De Leon, P. Kidkhunthod, N. Chanlek, F. Roessner, S. Prayoonpokarach, J. Wittayakun, Fuel 184 (2016) 512-517.
    [41]
    M. Afzal, P.K. Butt, H. Ahmad, J. Therm. Anal. 37 (1991) 1015-1023.
    [42]
    G. Yang, J. Han, Z. Qiu, X. Chen, Z. Feng, J. Yu, Inorg. Chem. Front. 7 (2020) 1975-1980.
    [43]
    R. Oord, I.C. Ten Have, J.M. Arends, F.C. Hendriks, J. Schmidt, I. Lezcano-Gonzalez, B.M. Weckhuysen, Catal Sci Technol 7 (2017) 3851-3862.
    [44]
    Z. Zhao, R. Yu, C. Shi, H. Gies, F.-S. Xiao, D. De Vos, T. Yokoi, X. Bao, U. Kolb, R. Mcguire, A.-N. Parvulescu, S. Maurer, U. Muller, W. Zhang, Catal Sci Technol 9 (2019) 241-251.
    [45]
    O. Klepel, B. Hunger, J. Therm. Anal. Calorim. 80 (2005) 201-206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (212) PDF downloads(98) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return