Volume 6 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Gangqiang Yu, Chengna Dai, Bin Wu, Ning Liu, Biaohua Chen, Ruinian Xu. Chlorine drying with hygroscopic ionic liquids. Green Energy&Environment, 2021, 6(3): 350-362. doi: 10.1016/j.gee.2020.10.022
Citation: Gangqiang Yu, Chengna Dai, Bin Wu, Ning Liu, Biaohua Chen, Ruinian Xu. Chlorine drying with hygroscopic ionic liquids. Green Energy&Environment, 2021, 6(3): 350-362. doi: 10.1016/j.gee.2020.10.022

Chlorine drying with hygroscopic ionic liquids

doi: 10.1016/j.gee.2020.10.022
  • The chlorine (Cl2) drying technology using ionic liquids (ILs) as absorbents was proposed for the first time and systematically investigated from the molecular level scaled up to the industrial level. The hygroscopic IL [EMIM][CH3SO3] was screened as a suitable absorbent from 238 potential IL candidates consisting of 14 cations and 17 anions, by calculating the Cl2 and H2O solubility and separation selectivity of Cl2 to H2O in different ILs based on the COSMO-RS model. The microscopic atomic and molecular insights into the separation mechanisms were deeply revealed by using COSMO-RS model analyses (i.e., σ-profiles, σ-potentials, excess enthalpies, entropies, and Gibbs free energies) and quantum chemistry calculation (binding energies and weak interaction analyses). The Cl2 solubility in pure IL and H2O + IL systems were predicted by the COSMO-RS model, and the results agree with the microscopic mechanism identification. Moreover, the strict equilibrium stage model employed with the COSMO-RS model parameters was built to perform the process simulation, and continuous Cl2 drying with ILs was conceptually designed and optimized at industrial scale. It was confirmed that [EMIM][CH3SO3] is a very promising absorbent leading to a less IL amount, a much lower energy consumption than the other IL [EMIM][BF4], which has a very bright industrialization potential used for Cl2 drying technology.

     

    The hygroscopic IL [EMIM][CH3SO3] is a very promising absorbent for highly efficient Cl2 drying.

  • loading
  • [1]
    E.G. Petropoulou, C. Carollo, G.D. Pappa, G. Caputo, E.C. Voutsas, J. Na. Gas Sci. Eng. 71 (2019) 102982.
    [2]
    R. Chebbi, M. Qasim, N.A. Jabbar, Energy Rep. 5 (2019) 723-732.
    [3]
    M.E. Haque, S. Palanki, Q. Xu, Ind. Eng. Chem. Res. 59 (2020) 7680-7692. doi: 10.1021/acs.iecr.9b06449
    [4]
    R. Mesgarian, A. Heydarinasab, A. Rashidi, Y. Zamani, Sep. Purif. Technol. 239 (2020) 116512.
    [5]
    M. Santos, L.M.S. Correia, J.L. de Medeiros, O.D.F. Araujo, Energ. Convers. Manage. 149 (2017) 760-773.
    [6]
    M. Takbiri, K.J. Jozani, A.M. Rashidi, H.R. Bozorgzadeh, Microporous Mesoporous Mater.. 182 (2013) 117-121.
    [7]
    X. He, I. Kumakiri, M. Hillestad, Sep. Purif. Technol. 247 (2020) 116993.
    [8]
    S.H.R. Shooshtari, A. Shahsavand, Appl. Therm. Eng. 139 (2018) 76-86.
    [9]
    E.G. Petropoulou, E.C. Voutsas, Ind. Eng. Chem. Res. 57 (2018) 8584-8604. doi: 10.1021/acs.iecr.8b01627
    [10]
    M. Neagu, D.L. Cursaru, J. Nat. Gas Sci. Eng. 37 (2017) 327-340.
    [11]
    S.B. Cao, P. Liu, L.L. Zhang, B.C. Sun, H.K. Zou, G.W. Chu, Y. Luo, J.F. Ghen, Ind. Eng. Chem. Res. 57 (2018) 5394-5400. doi: 10.1021/acs.iecr.7b04813
    [12]
    K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Chem. Rev. 117 (2017) 6636-6695. doi: 10.1021/acs.chemrev.6b00776
    [13]
    C. Dai, J. Zhang, C. Huang, Z. Lei, Chem. Rev. 117 (2017) 6929-6983. doi: 10.1021/acs.chemrev.7b00030
    [14]
    S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem. Rev. 117 (2017) 9625-9673. doi: 10.1021/acs.chemrev.7b00072
    [15]
    F.F. Chen, K. Huang, J.P. Fan, D.J. Tao, AIChE J. 64 (2018) 632-639. doi: 10.1002/aic.15952
    [16]
    K. Huang, X.M. Zhang, L.S. Zhou, D.J. Tao, J.P. Fan, Chem. Eng. Sci. 173 (2017) 253-263.
    [17]
    F.J. Liu, K. Huang, L.L. Jiang, AIChE J. 64 (2018) 3671-3680. doi: 10.1002/aic.16333
    [18]
    Z. Song, C.Y. Zhang, Z.W. Qi, T. Zhou, K. AIChE J. 64 (2018) 1013-1025. doi: 10.1002/aic.15994
    [19]
    Z. Song, H. Shi, X. Zhang, T. Zhou, Chem. Eng. Sci. (2020) 115752.
    [20]
    F.-Y. Lu, Y.-J. Chen, Y. Chen, X. Ding, Z. Guan, Y.-H. He, Chem. Commun. 56 (2020) 623-626. doi: 10.1039/c9cc09178e
    [21]
    W.-J. Jiang, J.-B. Zhang, Y.-T. Zou, H.-L. Peng, K. Huang, ACS Sustainable Chem. Eng. 8 (2020) 13408-13417. doi: 10.1021/acssuschemeng.0c04215
    [22]
    Z.-L. Li, F.-Y. Zhong, L.-S. Zhou, Z.-Q. Tian, K. Huang, Ind. Eng.Chem. Res. 59 (2020) 2060-2067. doi: 10.1021/acs.iecr.9b04924
    [23]
    J. Li, Z. Dai, M. Usman, Z. Qi, L. Deng, Int. J. Greenhouse Gas Control 45 (2016) 207-215.
    [24]
    J. Wang, Z. Song, H.-Y. Cheng, L. Chen, L. Deng, Z. Qi, ACS Sustainable Chem. Eng. 6 (2018) 12025-12035. doi: 10.1021/acssuschemeng.8b02321
    [25]
    J. Wang, Z. Song, X. Li, H. Cheng, L. Chen, Z. Qi, Ind. Eng. Chem. Res. 59 (2020) 2093-2103. doi: 10.1021/acs.iecr.9b05684
    [26]
    G.Q. Yu, C.N. Dai, H. Gao, R.S. Zhu, X.X. Du, Z.G. Lei, Ind. Eng. Chem. Res. 57 (2018) 12202-12214. doi: 10.1021/acs.iecr.8b02420
    [27]
    G.Q. Yu, M.L. Mu, J. Li, B. Wu, R.N. Xu, N. Liu, B.H. Chen, C.N. Dai, ACS Sustainable Chem. Eng. 8 (2020) 9058-9069. doi: 10.1021/acssuschemeng.0c02273
    [28]
    R. Xu, C. Dai, M. Mu, J. Cheng, Z. Lei, B. Wu, N. Liu, B. Chen, G. Yu, J. Hazard. Mater. 402 (2021) 123507.
    [29]
    J. Wang, Z. Song, H. Cheng, L. Chen, L. Deng, Z. Qi, Sep. Purif. Technol. 248 (2020) 117053.
    [30]
    J. Li, C. You, L. Chen, Y. Ye, Z. Qi, K. Sundmacher, Ind. Eng. Chem. Res. 51 (2012) 12081-12088. doi: 10.1021/ie301164v
    [31]
    G.Q. Yu, C.N. Dai, L. Wu, Z.G. Lei, Energy Fuels 31 (2017) 1429-1439. doi: 10.1021/acs.energyfuels.6b02920
    [32]
    J.L. Han, C.N. Dai, Z.G. Lei, B.H. Chen, AIChE J. 64 (2018) 606-619. doi: 10.1002/aic.15926
    [33]
    G.Q. Yu, Y.F. Jiang, Z.G. Lei, Ind. Eng. Chem. Res. 57 (2018) 12225-12234. doi: 10.1021/acs.iecr.8b02790
    [34]
    G.Q. Yu, X.H. Sui, Z.G. Lei, C.N. Dai, B.H. Chen, AIChE J. 65 (2019) 479-482. doi: 10.1002/aic.16450
    [35]
    C.N. Dai, L. Wu, G.Q. Yu, Z.G. Lei, Ind. Eng. Chem. Res. 56 (2017) 14642-14650. doi: 10.1021/acs.iecr.7b03379
    [36]
    A. Klamt, J. Phys. Chem. 99 (1995) 2224-2235. doi: 10.1021/j100007a062
    [37]
    J.L. Han, C.N. Dai, G.Q. Yu, Z.G. Lei, Green Energ. Environ. 3 (2018) 247-265.
    [38]
    C.N. Dai, Z.G. Lei, B.H. Chen, AIChE J. 63 (2017) 1792-1798. doi: 10.1002/aic.15711
    [39]
    M. Diedenhofen, A. Klamt, Fluid Phase Equil.. 294 (2010) 31-38.
    [40]
    K. Bittermann, S. Spycher, S. Endo, L. Pohler, U. Huniar, K.U. Goss, A. Klamt, J. Phys. Chem. B 118 (2014) 14833-14842. doi: 10.1021/jp509348a
    [41]
    Z. Song, X.T. Hu, H.Y. Wu, M.C. Mei, S. Linke, T. Zhou, Z.W. Qi, K. Sundmacher, ACS Sustainable Chem. Eng. 8 (2020) 8741-8751. doi: 10.1021/acssuschemeng.0c02490
    [42]
    Z. Song, X.T. Hu, Y.G. Zhou, T. Zhou, Z.W. Qi, K. Sundmacher, AIChE J. 65 (2019).
    [43]
    A. Klamt, F. Eckert, M. Hornig, M.E. Beck, T. Burger, J. Comput. Chem. 23 (2002) 275-281.
    [44]
    B.E. Poling, J.M. Prausnitz, J.P. O’connell, The properties of gases and liquids, Mcgraw-hill New York, 2001.
    [45]
    N.E. Israeloff, G.B. Alers, M.B. Weissman, Phys. Rev. B 44 (1991) 12613-12616.
    [46]
    A. Schafer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100 (1994) 5829-5835. doi: 10.1063/1.467146
    [47]
    J.P. Perdew, Phys. Rev. B 33 (1986) 8822-8824. doi: 10.1103/PhysRevB.33.8822
    [48]
    F. Neese, , Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 (2012) 73-78. doi: 10.1002/wcms.81
    [49]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104. doi: 10.1063/1.3382344
    [50]
    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456-1465. doi: 10.1002/jcc.21759
    [51]
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297-3305. doi: 10.1039/b508541a
    [52]
    L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 13 (2011) 6670-6688. doi: 10.1039/c0cp02984j
    [53]
    J. Zheng, X. Xu, D.G. Theor. Chem. Acc. 128 (2011) 295-305. doi: 10.1007/s00214-010-0846-z
    [54]
    T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580-592. doi: 10.1002/jcc.22885
    [55]
    C. Lefebvre, H. Khartabil, J.C. Boisson, J. Contreras-Garcia, J.P. Piquemal, E. Henon, ChemPhysChem 19 (2018) 724-735.
    [56]
    K.R. Harris, M. Kanakubo, J. Chem. Eng. Data 61 (2016) 2399-2411. doi: 10.1021/acs.jced.6b00021
    [57]
    M.G. Freire, A.R.R. Teles, M.A. Rocha, B. Schroder, C.M. Neves, P.J. Carvalho, D.V. Evtuguin, L.M. Santos, J.A. Coutinho, J. Chem. Eng. Data 56 (2011) 4813-4822. doi: 10.1021/je200790q
    [58]
    C.M. Tenney, M. Massel, J.M. Mayes, M. Sen, J.F. Brennecke, E.J. Maginn, J. Chem. Eng. Data 59 (2014) 391-399. doi: 10.1021/je400858t
    [59]
    M.G. Freire, A.R.R. Teles, M.A.A. Rocha, B. Schroder, C. Neves, P.J. Carvalho, D.V. Evtuguin, L. Santos, J.A.P. Coutinho, J. Chem. Eng. Data 56 (2011) 4813-4822. doi: 10.1021/je200790q
    [60]
    M. Musial, M. Zorebski, M. Dzida, J. Safarov, E. Zorebski, E. Hassel, J. Mol. Liq. 276 (2019) 885-896.
    [61]
    L.E. Ficke, R.R. Novak, J.F. Brennecke, J. Chem. Eng. Data 55 (2010) 4946-4950. doi: 10.1021/je100522z
    [62]
    Kutas, T. J. The exergy method of thermal plant analysis. Florida: Krieger Publishing Company, 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (96) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return