Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Ying Wang, Yamin Qi, Maohong Fan, Baojun Wang, Lixia Ling, Riguang Zhang. C2H2 semi-hydrogenation on the PdxMy cluster/graphdiyne catalysts: Effects of cluster composition and size on the activity and selectivity. Green Energy&Environment, 2022, 7(3): 500-511. doi: 10.1016/j.gee.2020.10.020
Citation: Ying Wang, Yamin Qi, Maohong Fan, Baojun Wang, Lixia Ling, Riguang Zhang. C2H2 semi-hydrogenation on the PdxMy cluster/graphdiyne catalysts: Effects of cluster composition and size on the activity and selectivity. Green Energy&Environment, 2022, 7(3): 500-511. doi: 10.1016/j.gee.2020.10.020

C2H2 semi-hydrogenation on the PdxMy cluster/graphdiyne catalysts: Effects of cluster composition and size on the activity and selectivity

doi: 10.1016/j.gee.2020.10.020
  • C2H2 semi-hydrogenation has been widely applied in industry to eliminate trace C2H2 from C2H4 feed. C2H2 semi-hydrogenation to C2H4 on a series of the newly designed catalysts, graphdiyne (GDY) as a new carbon allotrope supported different sizes of PdxMy clusters (PdxMy/GDY, M = Cu, Ag, Au, Ni; x+y = 1-3), were studied using DFT calculations. The results found that C2H2 semi-hydrogenation to C2H4 on PdxMy/GDY catalysts exhibits that both the activity and selectivity greatly depend on the composition and size of PdxMy/GDY catalysts. Surprisingly, our results for the first time discovered the Pd1/GDY catalyst with GDY supported the single atom Pd that presents the best selectivity and activity toward C2H4 formation compared to the previously reported catalysts so far in C2H2 semi-hydrogenation. This study would provide a theoretical clue for designing and screening out the potential catalysts with GDY supported small sizes of PdxMy and other metal clusters in C2H2 hydrogenation.

     

  • Y. W. and Y. Q. contributed equally to this work.
  • loading
  • [1]
    A. Borodziński, G.C. Bond, Catal. Rev. Sci. Eng. 48(2006) 91-144.
    [2]
    A. Borodziński, G.C. Bond, Catal. Rev. Sci. Eng. 50(2008) 379-469.
    [3]
    F. Studt, F. Abild-Pedersen, T. Bligaard, R.Z. Sørensen, C.H. Christensen, J.K. Nørskov, Angew. Chem. Int. Ed. 47(2008) 9299-9302.
    [4]
    D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A. KnopGericke, S.D. Jackson, R. Schlögl, Science 320(2008) 86-89.
    [5]
    F. Studt, F. Abild-Pedersen, T. Bligaard, R.Z. Sørensen, C.H. Christensen, J.K. Nørskov, Science 320(2008) 1320-1322.
    [6]
    B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, J. Catal. 305(2013) 264-276.
    [7]
    X. Liu, D. Tian, C. Meng, J. Mol. Struct. 1080(2015) 105-110.
    [8]
    B. Mercedes, L.P. Antonio, C. Avelino, Acc. Chem. Res. 47(2014) 834-844.
    [9]
    J.Y. Zhang, Y.C. Deng, X.B. Cai, Y.L. Chen, M. Peng, Z.M. Jia, Z. Jiang, P.J. Ren, S.Y. Yao, J.L. Xie, D.Q. Xiao, X.D. Wen, N. Wang, H.Y. Liu, D. Ma, ACS Catal. 9(2019) 5998-6005.
    [10]
    A.C. Gluhoi, J.W. Bakker, B.E. Nieuwenhuys, Catal. Today 154(2010) 13-20.
    [11]
    T. Abdollahi, D. Farmanzadeh, Appl. Surf. Sci. 433(2018) 513-529.
    [12]
    W. Xiao, R. Zeng, L. Cheng, J.W. Wang, L.J. Jiang, L.G. Wang, RSC Adv. 5(2015) 61861-61867.
    [13]
    F. Huang, Y.C. Deng, Y.L. Chen, X.B. Cai, M. Peng, Z.M. Jia, J.L. Xie, D.Q. Xiao, X.D. Wen, N. Wang, Z. Jiang, H.Y. Liu, D. Ma, Nat. Commun. 10(2019) 4431.
    [14]
    X.X. Shi, Y. Lin, L. Huang, Z.H. Sun, Y. Yang, X.H. Zhou, E. Vovk, X.Y. Liu, X.H. Huang, M. Sun, S.Q. Wei, J.L. Lu, ACS Catal. 10(2020) 3495-3504.
    [15]
    F. Huang, Y.C. Deng, Y.L. Chen, X.B. Cai, M. Peng, Z.M. Jia, P.J. Ren, D.Q. Xiao, X.D. Wen, N. Wang, H.Y. Liu, D. Ma, J. Am. Chem. Soc. 140(2018) 13142-13146.
    [16]
    G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 46(2010) 3256-3258.
    [17]
    C.S. Huang, S.L. Zhang, H.B. Liu, Y.J. Li, G.L. Cui, Y.L. Li, Nanomater. Energy 11(2015) 481-489.
    [18]
    S.L. Zhang, H.B. Liu, C.S. Huang, G.L. Cui, Y.L. Li, Chem. Commun. 51(2015) 1834-1837.
    [19]
    N.L. Yang, Y.Y. Liu, H. Wen, Z.Y. Tang, H.J. Zhao, Y.L. Li, D. Wang, ACS Nano 7(2013) 1504-1512.
    [20]
    H. Qiu, M.M. Xue, C. Shen, Z.H. Zhang, W.L. Guo, Adv. Mater. 31(2019) 1803772.
    [21]
    W.H. Xu, Y.H. Chen, M.X. Song, X.C. Liu, Y.J. Zhao, M.L. Zhang, C.R. Zhang, J. Phys. Chem. C 124(2020) 8110-8118.
    [22]
    J. Zhong, J. Wang, J.G. Zhou, B.H. Mao, C.H. Liu, H.B. Liu, Y.L. Li, T.K. Sham, X.H. Sun, S.D. Wang, J. Phys. Chem. C 117(2013) 5931-5936.
    [23]
    X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang, Y. Li, Sci. Rep. 5(2015) 1-7.
    [24]
    Z.S. Lu, S. Li, P. Lv, C.Z. He, D.W. Ma, Z.X. Yang, Appl. Surf. Sci. 360(2016) 1-7.
    [25]
    Z.Z. Lin, Q. Wei, X.M. Zhu, Carbon 66(2014) 504-510.
    [26]
    Z.W. Chen, Z. Wen, Q. Jiang, J. Phys. Chem. C 121(2017) 3463-3468.
    [27]
    D.H. Xing, C.Q. Xu, Y.G. Wang, J. Li, J. Phys. Chem. C 123(2019) 10494-10500.
    [28]
    L. Xu, E.E. Stangland, M. Mavrikakis, J. Catal. 362(2018) 18-24.
    [29]
    T. Abdollahi, D. Farmanzadeh, C. R. Chim. 21(2018) 484-493.
    [30]
    N. Wongwaranon, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot, Catal. Today 131(2008) 553-558.
    [31]
    Q. Jin, Y.F. He, M.Y. Miao, C.Y. Guan, Y.Y. Du, J.T. Feng, D.Q. Li, Appl. Catal. Gen. 500(2015) 3-11.
    [32]
    B. Delley, J. Chem. Phys. 92(1990) 508-517.
    [33]
    B. Delley, J. Chem. Phys. 113(2000) 7756-7764.
    [34]
    B.Hammer, L.B.Hansen,J.K.Nørskov, Phys. Rev. B 59(1999)7413-7421.
    [35]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.
    [36]
    A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß, Mol. Phys. 80(1993) 1431-1441.
    [37]
    P. Hohenberg, W. Kohn, Phys. Rev. B 136(1964) B864-B871.
    [38]
    T. Björkman, A. Gulans, A.V. Krasheninnikov, R.M. Nieminen, Phys. Rev. Lett. 108(2012) 235502.
    [39]
    M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86(1987) 866-872.
    [40]
    R.A. Aziz, Mol. Phys. 38(1979) 177-190.
    [41]
    N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comput. Mater. Sci. 28(2003) 250-258.
    [42]
    T.A. Halgren, W.N. Lipscomb, Chem. Phys. Lett. 49(1977) 225-232.
    [43]
    Z.J. Zhao, J.B. Zhao, X. Chang, S.J. Zha, L. Zeng, J.L. Gong, AIChE J. 65(2019) 1059-1066.
    [44]
    J.T. Wehrli, D.J. Thomas, M.S. Wainwright, D.L. Trimm, N.W. Cant, Stud. Surf. Sci. Catal. 68(1991) 203-210.
    [45]
    I.Y.Ahn,J.H.Lee,S.S.Kum,S.H. Moon,Catal.Today123(2007)151-157.
    [46]
    G.C. Battiston, L. Dalloro, G.R. Tauszik, Appl. Catal. 2(1982) 1-17.
    [47]
    A. Sárkány, L. Guczi, A.H. Weiss, Appl. Catal. 10(1984) 369-388.
    [48]
    M. Larsson, J. Jansson, S. Asplund, J. Catal. 178(1998) 49-57.
    [49]
    A.J. McCue, A.M. Shepherd, J.A. Anderson, Catal. Sci. Technol. 5(2015) 2880-2890.
    [50]
    A.J. McCue, C.J. McRitchie, A.M. Shepherd, J.A. Anderson, J. Catal. 319(2014) 127-135.
    [51]
    P. Wu, P. Du, H. Zhang, C. Cai, Phys. Chem. Chem. Phys. 16(2014) 5640-5648.
    [52]
    Z. Guan, M.F. Xue, Z.Q. Li, R.G. Zhang, B.J. Wang, Appl. Surf. Sci. 503(2020) 144142.
    [53]
    K. Srinivasu, S.K. Ghosh, J. Phys. Chem. C 117(2013) 26021-26028.
    [54]
    B. Mattson, W. Foster, J. Greimann, T. Hoette, N. Le, A. Mirich, S. Wankum, A. Cabri, C. Reichenbacher, E. Schwanke, J. Chem. Educ. 90(2013) 613-619.
    [55]
    U. Schneider, H. Busse, R. Link, G.R. Castro, K. Wandelt, J. Vac. Sci. Technol. 12(1994) 2069-2073.
    [56]
    B. Zhao, R.G. Zhang, Z.X. Huang, B.J. Wang, Appl. Catal. Gen. 546(2017) 111-121.
    [57]
    R.G. Zhang, J. Zhang, B. Zhao, L.L. He, A.J. Wang, B.J. Wang, J. Phys. Chem. C 121(2017) 27936-27949.
    [58]
    R.G. Zhang, B. Zhao, L.L. He, A.J. Wang, B.J. Wang, Phys. Chem. Chem. Phys. 20(2018) 17487-17496.
    [59]
    W.J. Kim, S.H. Moon, Catal. Today 185(2012) 2-16.
    [60]
    B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, ACS Catal. 2(2012) 1027-1032.
    [61]
    M.Z. Hu, W.J. Yang, S.J. Liu, W. Zhu, Y. Li, B.T. Hu, Z. Chen, R.A. Shen, W.-C. Cheong, Y. Wang, K. Zhou, Q. Peng, C. Chen, Y.D. Li, Chem. Sci. 10(2019) 614-619.
    [62]
    R.G. Zhang, B. Zhao, L.X. Ling, A.J. Wang, C.K. Russell, B.J. Wang, M.H. Fan, ChemCatChem 10(2018) 2424-2432.
    [63]
    R.G. Zhang, M.F. Xue, B.J. Wang, L.X. Ling, M.H. Fan, J. Phys. Chem. C 123(2019) 16107-16117.
    [64]
    Y.X. Liu, Y.J. Dong, Z.Y. Tang, X.F. Wang, L. Wang, T.J. Hou, H.P. Lin, Y.Y. Li, J. Mater. Chem. C 4(2016) 6380-6385.
    [65]
    X.H. Huang, Y.J. Xia, Y.J. Cao, X.S. Zheng, H.B. Pan, J.F. Zhu, C. Ma, H.W. Wang, J.J. Li, R. You, S.Q. Wei, W.X. Huang, J.L. Lu, Nano Res. 10(2017) 1302-1312.
    [66]
    H.R. Zhou, X.F. Yang, L. Li, X.Y. Liu, Y.Q. Huang, X.L. Pan, A.Q. Wang, J. Li, T. Zhang, ACS Catal. 6(2016) 1054-1061.
    [67]
    Q. Feng, S. Zhao, Y. Wang, J.C. Dong, W. Chen, D. He, D. Wang, J. Yang, Y. Zhu, H. Zhu, L. Gu, Z. Li, Y. Liu, R. Yu, J. Li, Y. Li, J. Am. Chem. Soc. 139(2017) 7294-7301.
    [68]
    M. Sandoval, P. Bechthold, V. Orazi, E.A. González, A. Juan, P.V. Jasen, Appl. Surf. Sci. 435(2018) 568-573.
    [69]
    R.G. Zhang, M.F. Xue, B.J. Wang, L.X. Ling, Appl. Surf. Sci. 481(2019) 421-432.
    [70]
    Y. Wang, B.J. Wang, L.X. Ling, R.G. Zhang, M.H. Fan, Chem. Eng. Sci. 218(2020) 115549.
    [71]
    C.X. Yang, G.Q. Wang, A.M. Liang, Y. Yue, H. Peng, D.J. Cheng, Catal. Commun. 124(2019) 41-45.
    [72]
    S.J. Wei, A. Li, J.C. Liu, Z. Li, W.X. Chen, Y. Gong, Q.H. Zhang, W.C. Cheong, Y. Wang, L.R. Zheng, H. Xiao, C. Chen, D.S. Wang, Q. Peng, L. Gu, X.D. Han, J. Li, Y.D. Li, Nat. Nanotechnol. 13(2018) 856-861.
    [73]
    S.Q. Zhou, L. Shang, Y.X. Zhao, R. Shi, G.I.N. Waterhouse, Y.C. Huang, L.R. Zhang, T.R. Zhang, Adv. Mater. 31(2019) 1900509.
    [74]
    H.T. Qi, P. Yu, Y.X. Wang, G.C. Han, H.B. Liu, Y.P. Yi, Y.L. Li, L.Q. Mao, J. Am. Chem. Soc. 137(2015) 5260-5263.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (213) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return