Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Yuantao Pei, Liang Huang, Lei Han, Haijun Zhang, Longhao Dong, Quanli Jia, Shaowei Zhang. NiCoP/NiOOH nanoflowers loaded on ultrahigh porosity Co foam for hydrogen evolution reaction under large current density. Green Energy&Environment, 2022, 7(3): 467-476. doi: 10.1016/j.gee.2020.10.019
Citation: Yuantao Pei, Liang Huang, Lei Han, Haijun Zhang, Longhao Dong, Quanli Jia, Shaowei Zhang. NiCoP/NiOOH nanoflowers loaded on ultrahigh porosity Co foam for hydrogen evolution reaction under large current density. Green Energy&Environment, 2022, 7(3): 467-476. doi: 10.1016/j.gee.2020.10.019

NiCoP/NiOOH nanoflowers loaded on ultrahigh porosity Co foam for hydrogen evolution reaction under large current density

doi: 10.1016/j.gee.2020.10.019
  • Developing user-friendly electrodes for efficiently producing hydrogen from water to substitute non-renewable fossil fuels is one of the challenges in the hydrogen energy field. For the first time, we have prepared self-supporting ultrahigh porosity cobalt foam loaded with NiCoP/NiOOH nanoflowers (NiCoP/CF) via freeze-drying and phosphorization. The as-prepared hierarchical NiCoP/CF electrodes showed superior catalytic activity for hydrogen evolution reaction (HER) in alkaline media. The one resulted from phosphorization at 350 °C (NiCoP/CF-350) only required overpotential of −47, and −126 mV to deliver geometrical current density of −10 mA cm−2 and −100 mA cm−2, respectively, demonstrating improved catalytic activity than the electrodes prepared using a commercial nickel foam as a support. Moreover, it could retain its superior stability at a current density higher than −500 mA cm−2 for 16 h. Such an outstanding performance can be attributed to the ultrahigh porosity of Co foam support, optimal adsorption energies of HER intermediates (H∗), facile water dissociation on the NiCoP/NiOOH hetero-interfaces, and the assistance of NiOOH facilitating the electrons transfer from the Co foam inside to the NiCoP outside. The work would provide a new strategy for future design of advanced HER electrocatalysts.

     

  • loading
  • [1]
    X. Zou, Y. Zhang, Chemical Society Reviews 44 (2015) 5148-5180.
    [2]
    R.J.A. Liu P, Journal of the American Chemical Society 127 (2005) 14871-14878.
    [3]
    J.J. Gao, P. Luo, H.J. Qiu, Y. Wang, Nanotechnology 28 (2017) 105705.
    [4]
    T. Wu, M. Pi, X. Wang, W. Guo, D. Zhang, S. Chen, Applied Surface Science 427 (2018) 800-806.
    [5]
    W. Li, N. Jiang, B. Hu, X. Liu, F. Song, G. Han, T.J. Jordan, T.B. Hanson, T.L. Liu, Y. Sun, Chem 4 (2018) 637-649.
    [6]
    W. Li, D. Xiong, X. Gao, L. Liu, Chemical Communications 55 (2019) 8744-8763.
    [7]
    W. Li, X. Gao, X. Wang, D. Xiong, P.-P. Huang, W.-G. Song, X. Bao, L. Liu, Journal of Power Sources 330 (2016) 156-166.
    [8]
    W. Li, X. Gao, D. Xiong, F. Wei, W.-G. Song, J. Xu, L. Liu, Advanced Energy Materials 7 (2017) 1602579.
    [9]
    W. Li, X. Gao, D. Xiong, F. Xia, J. Liu, W.G. Song, J. Xu, S.M. Thalluri, M.F. Cerqueira, X. Fu, L. Liu, Chemical Science 8 (2017) 2952-2958.
    [10]
    W. Li, D. Xiong, X. Gao, W.-G. Song, F. Xia, L. Liu, Catalysis Today 287 (2017) 122-129.
    [11]
    F. Song, W. Li, J. Yang, G. Han, T. Yan, X. Liu, Y. Rao, P. Liao, Z. Cao, Y. Sun, ACS Energy Letters 4 (2019) 1594-1601.
    [12]
    L. Tian, X. Yan, X. Chen, ACS Catalysis 6 (2016) 5441-5448.
    [13]
    L. Yao, N. Zhang, Y. Wang, Y. Ni, D. Yan, C. Hu, Journal of Power Sources 374 (2018) 142-148.
    [14]
    L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Journal of the American Chemical Society 137 (2015) 14023-14026.
    [15]
    M. Sial, H. Lin, X. Wang, Nanoscale 10 (2018) 12975-12980.
    [16]
    P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su, Q. Chen, Advanced Materials 30 (2018) 1705324.
    [17]
    H. Du, X. Zhang, Q. Tan, R. Kong, F. Qu, Chemical Communications 53 (2017) 12012-12015.
    [18]
    C. Li, L. Wang, M. Wei, D.G. Evans, X. Duan, Journal of Materials Chemistry 18 (2008) 2666-2672.
    [19]
    C. Hu, L. Dai, Advanced Materials 29 (2017) 1604942.
    [20]
    R.D.L. Smith, M.S. Prevot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, C.P. Berlinguette, Science 340 (2013) 60-63.
    [21]
    H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlogl, H.N. Alshareef, Nano Letters 16 (2016) 7718-7725.
    [22]
    L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao, B. Dong, Advanced Materials 29 (2017) 1704574.
    [23]
    X. Zhang, S. Zhang, J. Li, E. Wang, Journal of Materials Chemistry A 5 (2017) 22131-22136.
    [24]
    X. Yin, G. Sun, A. Song, L. Wang, Y. Wang, H. Dong, G. Shao, Electrochimica Acta 249 (2017) 52-63.
    [25]
    A. Han, S. Jin, H. Chen, H. Ji, Z. Sun, P. Du, Journal of Materials Chemistry A 3 (2015) 1941-1946.
    [26]
    J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M.K.H. Leung, S. Yang, Joule 1 (2017) 383-393.
    [27]
    L. Liao, J. Sun, D. Li, F. Yu, Y. Zhu, Y. Yang, J. Wang, W. Zhou, D. Tang, S. Chen, H. Zhou, Small 16 (2020) 1906629.
    [28]
    T. Liu, P. Li, N. Yao, G. Cheng, S. Chen, W. Luo, Y. Yin, Angewandte Chemie International Edition 58 (2019) 4679-4684.
    [29]
    J. P, L. Q, L. Y, T. J, A. Am, S. X, Angewandte Chemie International Edition 53 (2015) 12855-12859.
    [30]
    M.Q. Wang, Y. Zhang, S.J. Bao, Y.N. Yu, C. Ye, Electrochimica Acta 190 (2016) 365-370.
    [31]
    W. Zhu, R. Zhang, F. Qu, A.M. Asiri, X. Sun, ChemCatChem 9 (2017) 1721-1743.
    [32]
    V. Paserin, S. Marcuson, J. Shu, D.S. Wilkinson, Advanced Engineering Materials 6 (2010) 454-459.
    [33]
    C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chemical Society Reviews 45 (2016) 517-531.
    [34]
    Berit Hinnemann, Poul Georg Moses, Jacob Bonde, Kristina P. Joergensenjane, H. Nielsen, Sebastian Horch, Ib Chorkendorff, J.K. Noerskov, Journal of the American Chemical Society 127 (2005) 5308-5309.
    [35]
    F. Luo, Q. Zhang, X. Yu, S. Xiao, Y. Ling, H. Hu, L. Guo, Z. Yang, L. Huang, W. Cai, Angewandte Chemie International Edition 57 (2018) 14862-14867.
    [36]
    R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Science 334 (2012) 1256-1260.
    [37]
    D. Gao, J. Zhang, T. Wang, W. Xiao, K. Tao, D. Xue, J. Ding, Journal of Materials Chemistry A 4 (2016) 17363-17369.
    [38]
    J. Xiong, J. Li, J. Shi, X. Zhang, N.-T. Suen, Z. Liu, Y. Huang, G. Xu, W. Cai, X. Lei, ACS Energy Letters 3 (2018) 341-348.
    [39]
    X. Fan, H. Zhou, X. Guo, ACS Nano 9 (2015) 5125-5134.
    [40]
    H. Hu, J. Liu, Z. Xu, L. Zhang, B. Cheng, W. Ho, Applied Surface Science 478 (2019) 981-990.
    [41]
    Y. Li, H. Zhang, M. Jiang, Y. Kuang, X. Sun, X. Duan, Nano Research 9 (2016) 2251-2259.
    [42]
    K. Xiao, L. Zhou, M. Shao, M. Wei, Journal of Materials Chemistry A 6 (2018) 7585-7591.
    [43]
    Q.Q. Chen, C.C. Hou, C.J. Wang, X. Yang, R. Shi, Y. Chen, Chemical Communications 54 (2018) 6400-6403.
    [44]
    X. Deng, J. Huang, H. Wan, F. Chen, Y. Lin, X. Xu, R. Ma, T. Sasaki, Journal of Energy Chemistry 32 (2019) 93-104.
    [45]
    X. Lu, H. Xue, H. Gong, M. Bai, D. Tang, R. Ma, T. Sasaki, Nano-Micro Letters 12 (2020).
    [46]
    T. Wang, S. Zhang, X. Yan, M. Lyu, L. Wang, J. Bell, H. Wang, ACS Applied Materials & Interfaces 9 (2017) 15510-15524.
    [47]
    R. Allmann, Acta Crystallographica 24 (2010) 972-977.
    [48]
    F. Cavani, F. Trifiro, A. Vaccari, Catalysis today 11 (2010) 173-301.
    [49]
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Applied Surface Science 257 (2011) 2717-2730.
    [50]
    Q. Du, L. Su, L. Hou, G. Sun, M. Feng, X. Yin, Z. Ma, G. Shao, W. Gao, Journal of Alloys and Compounds 740 (2018) 1051-1059.
    [51]
    L. Liu, Z. Zhou, C. Peng, Electrochimica Acta 54 (2008) 434-441.
    [52]
    H. Wang, X. Xiang, F. Li, Journal of Materials Chemistry 20 (2010) 3944.
    [53]
    C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A.M. Asiri, X. Sun, Advanced Materials 29 (2017) 1602441.
    [54]
    T. Kubota, T. Okutani, I. Inamoto, K. Takimoto, Bunseki Kagaku 41 (1992) 57-62.
    [55]
    J. Sun, F. Tian, F. Yu, Z. Yang, B. Yu, S. Chen, Z. Ren, H. Zhou, ACS Catalysis 10 (2020) 1511-1519.
    [56]
    Y. Zeng, Y. Wang, G. Huang, C. Chen, L. Huang, R. Chen, S. Wang, Chemical Communications 54 (2018) 1465-1468.
    [57]
    Y. Peng, K. Jiang, W. Hill, Z. Lu, H.B. Yao, H. Wang, ACS Applied Materials & Interfaces 11 (2019) 3971-3977.
    [58]
    Y. Huang, L. Hu, R. Liu, Y. Hu, T. Xiong, W. Qiu, M.S. Balogun, A. Pan, Y. Tong, Applied Catalysis B:Environmental 251 (2019) 181-194.
    [59]
    G. Barati Darband, M. Aliofkhazraei, A.S. Rouhaghdam, Journal of Colloid and Interface Science 547 (2019) 407-420.
    [60]
    Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, ACS Catalysis 7 (2017) 2357-2366.
    [61]
    H. Zhang, X. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Advanced Functional Materials (2018) 1706847.
    [62]
    Z. Li, W. Niu, L. Zhou, Y. Yang, ACS Energy Letters 3 (2018) 892-898.
    [63]
    Y. Li, H. Wang, R. Wang, B. He, Y. Gong, Materials Research Bulletin 100 (2018) 72-75.
    [64]
    R. Ge, X. Ren, F. Qu, D. Liu, M. Ma, S. Hao, G. Du, A.M. Asiri, L. Chen, X. Sun, Chemistry-A European Journal 23 (2017) 6959.
    [65]
    H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin, L. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Energy & Environmental Science 11 (2018) 2858-2864.
    [66]
    Y. Han, P. Li, Z. Tian, C. Zhang, Y. Ye, X. Zhu, C. Liang, ACS Applied Energy Materials 2 (2019) 6302-6310
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (263) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return