Shen Zhang, Xing Zhang, Yuan Rui, Ruihu Wang, Xiaoju Li. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy&Environment, 2021, 6(4): 458-478. doi: 10.1016/j.gee.2020.10.013
Citation: Shen Zhang, Xing Zhang, Yuan Rui, Ruihu Wang, Xiaoju Li. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy&Environment, 2021, 6(4): 458-478. doi: 10.1016/j.gee.2020.10.013

Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction

doi: 10.1016/j.gee.2020.10.013
  • Hydrogen production by water electrolysis is a compelling technology to produce fuels and chemicals powered by renewable energy. It is highly desirable to develop cost-effective and durable electrocatalysts for hydrogen evolution reaction (HER). This review has summarized recent progress in mechanism understanding of non-precious metal electrocatalysts for pH-universal HER. The general approaches have been demonstrated to overcome the activity/stability limitations of the electrocatalysts for HER in a broad pH range. The perspectives and challenges for the development of pH-universal HER electrocatalysts have also been proposed. This review sheds light on the design and fabrication of high-performance electrocatalysts for versatile HER-related energy technologies.

     

  • [1]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355(2017), eaad4998.
    [2]
    G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57(2004) 39-44.
    [3]
    V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16(2017) 57-69.
    [4]
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110(2010) 6446-6473.
    [5]
    S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Adv. Sci. 4(2017) 1600337.
    [6]
    J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, M. Gratzel, Science 345(2014) 1593-1596.
    [7]
    K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 36(2010) 307-326.
    [8]
    M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 38(2013) 4901-4934.
    [9]
    M. Zeng, Y. Li, J. Mater. Chem. A 3(2015) 14942-14962.
    [10]
    J. Staszak-Jirkovsky, C.D. Malliakas, P.P. Lopes, N. Danilovic, S.S. Kota, K.C. Chang, B. Genorio, D. Strmcnik, V.R. Stamenkovic, M.G. Kanatzidis, N.M. Markovic, Nat. Mater. 15(2016) 197-203.
    [11]
    E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, J. Am. Chem. Soc. 135(2013) 9267-9270.
    [12]
    D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D.V.D. Vliet, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Nat. Chem. 5(2013) 300-306.
    [13]
    T. Shinagawa, K. Takanabe, ChemSusChem 10(2017) 1318-1336.
    [14]
    N. Dubouis, C. Yang, R. Beer, L. Ries, D. Voiry, A. Grimaud, ACS Catal. 8(2018) 828-836.
    [15]
    T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317(2007) 100-102.
    [16]
    D.Y. Wang, M. Gong, H.L. Chou, C.J. Pan, H.A. Chen, Y. Wu, M.C. Lin, M. Guan, J. Yang, C.W. Chen, Y.L. Wang, B.J. Hwang, C.C. Chen, H. Dai, J. Am. Chem. Soc. 137(2015) 1587-1592.
    [17]
    Y.H. Fang, G.F. Wei, Z.P. Liu, J. Phys. Chem. C 117(2013) 7669-7680.
    [18]
    Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 138(2016) 16174-16181.
    [19]
    N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Adv. Sci. 5(2018) 1700464.
    [20]
    I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastian-Pascual, V. Climent, J.M. Feliu, M.T.M. Koper, Nat. Energy 2(2017) 17031.
    [21]
    G. Zhao, K. Rui, S.X. Dou, W. Sun, Adv. Funct. Mater. 28(2018) 1803291.
    [22]
    C.T. Dinh, A. Jain, F.P.G. de Arquer, P. De Luna, J. Li, N. Wang, X. Zheng, J. Cai, B.Z. Gregory, O. Voznyy, B. Zhang, M. Liu, D. Sinton, E.J. Crumlin, E.H. Sargent, Nat. Energy 4(2019) 107-114.
    [23]
    S. Zhang, X. Zhang, X. Shi, F. Zhou, R. Wang, X. Li, J. Energy Chem. 49(2020) 166-173.
    [24]
    N. Yoshida, T. Morimoto, Electrochim. Acta 39(1994) 1733-1737.
    [25]
    M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, Nano Res. 9(2016) 28-46.
    [26]
    Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Int. J. Hydrogen Energy 42(2017) 30470-30492.
    [27]
    Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, I. Nagashima, Electrochim. Acta 100(2013) 249-256.
    [28]
    H. Takenaka, E. Torikai, Y. Kawami, N. Wakabayashi, Int. J. Hydrogen Energy 7(1982) 397-403.
    [29]
    C. Rakousky, G.P. Keeley, K. Wippermann, M. Carmo, D. Stolten, Electrochim. Acta 278(2018) 324-331.
    [30]
    F. Zhou, X. Zhang, R. Sa, S. Zhang, Z. Wen, R. Wang, Chem. Eng. J. 397(2020) 125454.
    [31]
    C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem. Int. Ed. 53(2014) 1378-1381.
    [32]
    D. Xu, M.B. Stevens, M.R. Cosby, S.Z. Oener, A.M. Smith, L.J. Enman, K.E. Ayers, C.B. Capuano, J.N. Renner, N. Danilovic, Y. Li, H. Wang, Q. Zhang, S.W. Boettcher, ACS Catal. 9(2019) 7-15.
    [33]
    W.S. Choi, M.J. Jang, Y.S. Park, K.H. Lee, J.Y. Lee, M.H. Seo, S.M. Choi, ACS Appl. Mater. Interfaces 10(2018) 38663-38668.
    [34]
    I. Vincent, D. Bessarabov, Renew. Sustain. Energy Rev. 81(2018) 1690-1704.
    [35]
    S. Fukuzumi, Y.M. Lee, W. Nam, ChemSusChem 10(2017) 4264-4276.
    [36]
    C. Liu, B.C. Colon, M. Ziesack, P.A. Silver, D.G. Nocera, Science 352(2016) 1210-1213.
    [37]
    P. Torella, C.J. Gagliardi, J.S. Chen, D.K. Bediako, B. Colon, J.C. Way, P.A. Silver, D.G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 112(2015) 2337-2342.
    [38]
    Y. Shi, B. Zhang, Chem. Soc. Rev. 45(2016) 1529-1541.
    [39]
    Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 31(2019) 1802880.
    [40]
    W.F. Chen, J.T. Muckerman, E. Fujita, Chem. Commun. 49(2013) 8896-8909.
    [41]
    Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, J. Mater. Chem. A 7(2019) 14971-15005.
    [42]
    H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 51(2012) 12703-12706.
    [43]
    H. Park, A. Encinas, J.P. Scheifers, Y. Zhang, B.P.T. Fokwa, Angew. Chem. Int. Ed. 56(2017) 5575-5578.
    [44]
    S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora, A.K. Yadav, D. Bhattacharyya, S.N. Jha, A. Miotello, D.C. Kothari, Appl. Catal. B 192(2016) 126-133.
    [45]
    P. Zhang, M. Wang, Y. Yang, T. Yao, H. Han, L. Sun, Nano Energy 19(2016) 98-107.
    [46]
    M. Zeng, H. Wang, C. Zhao, J. Wei, K. Qi, W. Wang, X. Bai, ChemCatChem 8(2016) 708-712.
    [47]
    Q. Li, X. Zou, X. Ai, H. Chen, L. Sun, X. Zou, Adv. Energy Mater. 9(2019) 1803369.
    [48]
    S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Chem. Rev. 113(2013) 7981-8065.
    [49]
    A.M. Alexander, J.S.J. Hargreaves, Chem. Soc. Rev. 39(2010) 4388-4401.
    [50]
    Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Adv. Sci. 3(2016) 1500286.
    [51]
    M.S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Mater. Today 20(2017) 425-451.
    [52]
    J. Xie, Y. Xie, Chem. Eur. J. 22(2016) 3588-3598.
    [53]
    B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, J. Am. Chem. Soc. 135(2013) 19186-19192.
    [54]
    W.F. Chen, K. Sasaki, C. Ma, A.I. Frenkel, N. Marinkovic, J.T. Muckerman, Y. Zhu, R.R. Adzic, Angew. Chem. Int. Ed. 51(2012) 6131-6135.
    [55]
    T. Wang, X. Wang, Y. Liu, J. Zheng, X. Li, Nano Energy 22(2016) 111-119.
    [56]
    H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao, Y. Zheng, S.Z. Qiao, ACS Nano 12(2018) 12761-12769.
    [57]
    J. Lai, B. Huang, Y. Chao, X. Chen, S. Guo, Adv. Mater. 31(2019) 1805541.
    [58]
    C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, ACS Energy Lett. 4(2019) 747-754.
    [59]
    Y. Gu, S. Chen, J. Ren, Y.A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano 12(2018) 245-253.
    [60]
    J. Hou, Y. Sun, Z. Li, B. Zhang, S. Cao, Y. Wu, Z. Gao, L. Sun, Adv. Funct. Mater. 28(2018) 1803278.
    [61]
    S. Faber, S. Jin, Energy Environ. Sci. 7(2014) 3519-3542.
    [62]
    H.H. Hwu, J.G. Chen, Chem. Rev. 105(2005) 185-212.
    [63]
    R. Kitchin, J.K. Norskov, M.A. Barteau, J.G.G. Chen, Catal. Today 105(2005) 66-73.
    [64]
    Q. Gong, Y. Wang, Q. Hu, J. Zhou, R. Feng, P.N. Duchesne, P. Zhang, F. Chen, N. Han, Y. Li, C. Jin, Y. Li, S.T. Lee, Nat. Commun. 7(2016) 13216.
    [65]
    N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V.S. Batista, W. Liu, X. Sun, Nat. Commun. 9(2018) 924.
    [66]
    Y.T. Xu, X. Xiao, Z.M. Ye, S. Zhao, R. Shen, C.T. He, J.P. Zhang, Y. Li, X.M. Chen, J. Am. Chem. Soc. 139(2017) 5285-5288.
    [67]
    D.V. Esposito, S.T. Hunt, Y.C. Kimmel, J.G. Chen, J. Am. Chem. Soc. 134(2012) 3025-3033.
    [68]
    Y. Liu, G. Yu, G.D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 54(2015) 10752-10757.
    [69]
    F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W. Lou, Angew. Chem. Int. Ed. 54(2015) 15395-15399.
    [70]
    H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6(2015) 6512.
    [71]
    F. Li, X. Zhao, J. Mahmood, M.S. Okyay, S.M. Jung, I. Ahmad, S.J. Kim, G.F. Han, N. Park, J.B. Baek, ACS Nano 11(2017) 7527-7533.
    [72]
    Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong, Y. Li, ACS Nano 10(2016) 11337-11343.
    [73]
    Y.N. Regmi, G.R. Waetzig, K.D. Duffee, S.M. Schmuecker, J.M. Thode, B.M. Leonard, J. Mater. Chem. A 3(2015) 10085-10091.
    [74]
    L. Cao, N. Zhang, L. Feng, J. Huang, Y. Feng, W. Li, D. Yang, Q. Liu, Nanoscale 10(2018) 14272-14279.
    [75]
    H. Xu, J. Wan, H. Zhang, L. Fang, L. Liu, Z. Huang, J. Li, X. Gu, Y. Wang, Adv. Energy Mater. 8(2018) 1800575.
    [76]
    H. Han, M. Kwak, Y. Kim, J. Cheon, Chem. Rev. 118(2018) 6151-6188.
    [77]
    X.Y. Yu, X.W. Lou, Adv. Energy Mater. 8(2018) 1701592.
    [78]
    Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S.X. Dou, W. Sun, Adv. Funct. Mater. 27(2017) 1702317.
    [79]
    Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Adv. Mater. 31(2019) 1807134.
    [80]
    Y. Yan, B.Y. Xia, Z. Xu, X. Wang, ACS Catal. 4(2014) 1693-1705.
    [81]
    G. Li, D. Zhang, Y. Yu, S. Huang, W. Yang, L. Cao, J. Am. Chem. Soc. 139(2017) 16194-16200.
    [82]
    Q. Wang, Z.L. Zhao, S. Dong, D. He, M.J. Lawrence, S. Han, C. Cai, S. Xiang, P. Rodriguez, B. Xiang, Z. Wang, Y. Liang, M. Gu, Nano Energy 53(2018) 458-467.
    [83]
    X. Zhang, F. Zhou, S. Zhang, Y. Liang, R. Wang, Adv. Sci. 6(2019) 1900090.
    [84]
    X. Shi, M. Fields, J. Park, J.M. McEnaney, H. Yan, Y. Zhang, C. Tsai, T.F. Jaramillo, R. Sinclair, J.K. Nørskov, X. Zheng, Energy Environ. Sci. 11(2018) 2270-2277.
    [85]
    Z. Luo, Y. Ouyang, H. Zhang, M. Xiao, J. Ge, Z. Jiang, J. Wang, D. Tang, X. Cao, C. Liu, W. Xing, Nat. Commun. 9(2018) 2120.
    [86]
    K. Sun, L. Zeng, S. Liu, L. Zhao, H. Zhu, J. Zhao, Z. Liu, D. Cao, Y. Hou, Y. Liu, Y. Pan, C. Liu, Nano Energy 58(2019) 862-869.
    [87]
    L. Najafi, S. Bellani, R. Oropesa-Nunez, A. Ansaldo, M. Prato, A.E.D.R. Castillo, F. Bonaccorso, Adv. Energy Mater. 8(2018) 1703212.
    [88]
    L. Najafi, S. Bellani, R. Oropesa-Nunez, A. Ansaldo, M. Prato, A.E.D.R. Castillo, F. Bonaccorso, Adv. Energy Mater. 8(2018) 1801764.
    [89]
    L. Najafi, S. Bellani, R. Oropesa-Nunez, M. Prato, B. Martin-Garcia, R. Brescia, F. Bonaccorso, ACS Nano 13(2019) 3162-3176.
    [90]
    D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, Energy Environ. Sci. 6(2013) 3553-3558.
    [91]
    W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E.I. Altman, H. Wang, Nat. Commun. 7(2016) 10771.
    [92]
    Q. Ma, C. Hu, K. Liu, S.-F. Hung, D. Ou, H.M. Chen, G. Fu, N. Zheng, Nano Energy 41(2017) 148-153.
    [93]
    Y. Zhu, H.C. Chen, C.S. Hsu, T.S. Lin, C.J. Chang, S.C. Chang, L.D. Tsai, H.M. Chen, ACS Energy Lett. 4(2019) 987-994.
    [94]
    B. Liu, Y.F. Zhao, H.Q. Peng, Z.Y. Zhang, C.K. Sit, M.F. Yuen, T.R. Zhang, C.S. Lee, W.J. Zhang, Adv. Mater. 29(2017) 1606521.
    [95]
    Z.F. Huang, J. Song, K. Li, M. Tahir, Y.T. Wang, L. Pan, L. Wang, X. Zhang, J.J. Zou, J. Am. Chem. Soc. 138(2016) 1359-1365.
    [96]
    Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Nano Today 15(2017) 26-55.
    [97]
    Y. Xu, R. Wu, J. Zhang, Y. Shi, B. Zhang, Chem. Commun. 49(2013) 6656-6658.
    [98]
    L. Feng, H. Vrubel, M. Bensimon, X. Hu, Phys. Chem. Chem. Phys. 16(2014) 5917-5921.
    [99]
    J. Tian, Q. Liu, A.M. Asiri, X. Sun, J. Am. Chem. Soc. 136(2014) 7587-7590.
    [100]
    J.F. Callejas, J.M. McEnaney, C.G. Read, J.C. Crompton, A.J. Biacchi, E.J. Popczun, T.R. Gordon, N.S. Lewis, R.E. Schaak, ACS Nano 8(2014) 11101-11107.
    [101]
    C.Y. Son, I.H. Kwak, Y.R. Lim, J. Park, Chem. Commun. 52(2016) 2819-2822.
    [102]
    J. Kibsgaard, C. Tsai, K. Chan, J.D. Benck, J.K. Norskov, F. AbildPedersen, T.F. Jaramillo, Energy Environ. Sci. 8(2015) 3022-3029.
    [103]
    X. Zhang, X. Zhang, H. Xu, Z. Wu, H. Wang, Y. Liang, Adv. Funct. Mater. 27(2017) 1606635.
    [104]
    Z. Wu, Q. Gan, X. Li, Y. Zhong, H. Wang, J. Phys. Chem. C 122(2018) 2848-2853.
    [105]
    Z. Wu, L. Huang, H. Liu, H. Wang, ACS Catal. 9(2019) 2956-2961.
    [106]
    P. Liu, J.A. Rodriguez, J. Am. Chem. Soc. 127(2005) 14871-14878.
    [107]
    P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.Y. Wang, K.H. Lim, X. Wang, Energy Environ. Sci. 7(2014) 2624-2629.
    [108]
    Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 3(2015) 1656-1665.
    [109]
    J.F. Callejas, C.G. Read, E.J. Popczun, J.M. McEnaney, R.E. Schaak, Chem. Mater. 27(2015) 3769-3774.
    [110]
    Q. Zhou, Z. Chen, L. Zhong, X. Li, R. Sun, J. Feng, G.C. Wang, X. Peng, ChemSusChem 11(2018) 2828-2836.
    [111]
    Y. Zhang, L. Gao, E.J.M. Hensen, J.P. Hofmann, ACS Energy Lett. 3(2018) 1360-1365.
    [112]
    J.M. McEnaney, J.C. Crompton, J.F. Callejas, E.J. Popczun, A.J. Biacchi, N.S. Lewis, R.E. Schaak, Chem. Mater. 26(2014) 4826-4831.
    [113]
    J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 55(2016) 12854-12858.
    [114]
    X. Zhang, X. Yu, L. Zhang, F. Zhou, Y. Liang, R. Wang, Adv. Funct. Mater. 28(2018) 1706523.
    [115]
    M. Wang, C. Ye, M. Xu, S. Bao, Nano Res. 11(2018) 4728-4734.
    [116]
    H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 31(2019) 1806326.
    [117]
    J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li, L. Sun, Adv. Funct. Mater. 29(2019) 1808367.
    [118]
    J. Liu, D. Zhu, Y. Zheng, A. Vasileff, S.Z. Qiao, ACS Catal. 8(2018) 6707-6732.
    [119]
    W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Acc. Chem. Res. 51(2018) 1590-1598.
    [120]
    W. Zhu, C. Tang, D. Liu, J. Wang, A.M. Asiri, X. Sun, J. Mater. Chem. A 4(2016) 7169-7173.
    [121]
    Z. Pu, S. Wei, Z. Chen, S. Mu, Appl. Catal. B 196(2016) 193-198.
    [122]
    X. Zhang, F. Zhou, W. Pan, Y. Liang, R. Wang, Adv. Funct. Mater. 28(2018) 1804600.
    [123]
    C. Zhu, Q. Shi, S. Feng, D. Du, Y. Lin, ACS Energy Lett. 3(2018) 1713-1721.
    [124]
    C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. 56(2017) 13944-13960.
    [125]
    J. Kim, H.E. Kim, H. Lee, ChemSusChem 11(2018) 104-113.
    [126]
    J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energy Environ. Sci. 8(2015) 1594-1601.
    [127]
    Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.C. Idrobo, S.J. Pennycook, H. Dai, Nat. Nanotechnol. 7(2012) 394-400.
    [128]
    Y. Cheng, S. Zhao, B. Johannessen, J.P. Veder, M. Saunders, M.R. Rowles, M. Cheng, C. Liu, M.F. Chisholm, R. De Marco, H.M. Cheng, S.Z. Yang, S.P. Jiang, Adv. Mater. 30(2018) 1706287.
    [129]
    W. Bi, X. Li, R. You, M. Chen, R. Yuan, W. Huang, X. Wu, W. Chu, C. Wu, Y. Xie, Adv. Mater. 30(2018) 1706617.
    [130]
    H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N.D. Kim, E.L.G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M.J. Yacaman, P.M. Ajayan, D. Chen, J.M. Tour, Nat. Commun. 6(2015) 8668.
    [131]
    L. Zhang, W. Liu, Y. Dou, Z. Du, M. Shao, J. Phys. Chem. C 120(2016) 29047-29053.
    [132]
    L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Nat. Catal. 2(2019) 134-141.
    [133]
    Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang, K. Wu, X. Cao, W.C. Cheong, R. Shen, A. Han, Z. Chen, L. Zheng, J. Luo, Y. Lin, Y. Liu, D. Wang, Q. Peng, Q. Zhang, C. Chen, Y. Li, Angew. Chem. Int. Ed. 57(2018) 8614-8618.
    [134]
    W. Chen, J. Pei, C.T. He, J. Wan, H. Ren, Y. Wang, J. Dong, K. Wu, W.C. Cheong, J. Mao, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Adv. Mater. 30(2018) 1800396.
    [135]
    W. Chen, J. Pei, C.T. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J. Dong, S. Tian, W.C. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Angew. Chem. Int. Ed. 56(2017) 16086-16090.
    [136]
    J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 57(2018) 9495-9500.
    [137]
    H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang, J. Dong, X.W. Lou, Sci. Adv. 4(2018), eaao6657.
    [138]
    L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, M.T. Soo, B. Wood, D. Yang, A. Du, X. Yao, Chem 4(2018) 285-297.
    [139]
    Z. Zuo, Y. Li, Chem 3(2019) 899-903.
    [140]
    Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 9(2018) 1460.
    [141]
    J. Lu, P. Shen, Electrochem. Energy Rev. 2(2019) 105-127.
    [142]
    Y. Shen, Y. Zhou, D. Wang, X. Wu, J. Li, J. Xi, Adv. Energy Mater. 8(2018) 1701759.
    [143]
    X. Zou, X. Huang, A. Goswami, R. Silva, B.R. Sathe, E. Mikmekova, T. Asefa, Angew. Chem. Int. Ed. 53(2014) 4372-4376.
    [144]
    M. Tavakkoli, T. Kallio, O. Reynaud, A.G. Nasibulin, C. Johans, J. Sainio, H. Jiang, E.I. Kauppinen, K. Laasonen, Angew. Chem. Int. Ed. 54(2015) 4535-4538.
    [145]
    J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. 54(2015) 2100-2104.
    [146]
    D.Y. Chung, S.W. Jun, G. Yoon, H. Kim, J.M. Yoo, K.S. Lee, T. Kim, H. Shin, A.K. Sinha, S.G. Kwon, K. Kang, T. Hyeon, Y.E. Sung, J. Am. Chem. Soc. 139(2017) 6669-6674.
    [147]
    M. Gong, H. Dai, Nano Res. 8(2015) 23-39.
    [148]
    T. Zhang, M.Y. Wu, D.Y. Yan, J. Mao, H. Liu, W.B. Hu, X.W. Du, T. Ling, S.Z. Qiao, Nano Energy 43(2018) 103-109.
    [149]
    H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Commun. 6(2015) 7261.
    [150]
    T. Ling, D.Y. Yan, H. Wang, Y. Jiao, Z. Hu, Y. Zheng, L. Zheng, J. Mao, H. Liu, X.W. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 8(2017) 1509.
    [151]
    T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W.B. Hu, X.W. Du, K. Davey, S.Z. Qiao, Adv. Mater. 31(2019) 1807771.
    [152]
    B. Ruqia, S.I. Choi, ChemSusChem 11(2018) 2643-2653.
    [153]
    X. Zhang, Y. Liang, Adv. Sci. 5(2018) 1700644.
  • Relative Articles

    [1]Jinhao Li, Jing Ren, Shaoquan Li, Guangchao Li, Molly Meng-Jung Li, Rengui Li, Young Soo Kang, Xiaoxin Zou, Yong Luo, Bin Liu, Yufei Zhao. Potential industrial applications of photo/electrocatalysis: Recent progress and future challenges.  Green Energy&Environment, 2024, 9(5): 859-876. doi: 10.1016/j.gee.2023.05.003
    [2]Amaranadha Reddy Manchuri, Kamakshaiah Charyulu Devarayapalli, Bolam Kim, Youngsu Lim, Dae Sung Lee. Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting.  Green Energy&Environment. doi: 10.1016/j.gee.2024.08.006
    [3]Tianhao Li, Weihua Hu. Ionic liquid derived electrocatalysts for electrochemical water splitting.  Green Energy&Environment, 2024, 9(4): 604-622. doi: 10.1016/j.gee.2023.06.004
    [4]Jianjun Tian, Changsheng Cao, Yingchun He, Muhammad Imran Khan, Xin-Tao Wu, Qi-Long Zhu. Engineering hierarchical quaternary superstructure of an integrated MOF-derived electrode for boosting urea electrooxidation assisted water electrolysis.  Green Energy&Environment, 2024, 9(4): 695-701. doi: 10.1016/j.gee.2022.05.001
    [5]Yang Zhou, Lice Yu, Jinfa Chang, Ligang Feng, Jiujun Zhang. Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system.  Green Energy&Environment, 2024, 9(4): 758-770. doi: 10.1016/j.gee.2022.08.007
    [6]Jianmin Yua, Gongao Peng, Lishan Peng, Qingjun Chen, Chenliang Su, Lu Shang, Tierui Zhang. Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis.  Green Energy&Environment. doi: 10.1016/j.gee.2024.08.009
    [7]Daqiang Yan, Lin Zhang, Lei Shen, Runyu Hu, Weiping Xiao, Xiaofei Yang. Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media.  Green Energy&Environment, 2023, 8(4): 1205-1215. doi: 10.1016/j.gee.2022.01.011
    [8]Jing Li, Zhu Guo, Wenjie Zhang, Jing Guo, Konggang Qu, Weiwei Cai. Stable NiPt-Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell.  Green Energy&Environment, 2023, 8(2): 559-566. doi: 10.1016/j.gee.2021.08.005
    [9]Dandan Chen, Cheng Han, Qiuhong Sun, Junyang Ding, Qi Huang, Ting-Ting Li, Yue Hu, Jinjie Qian, Shaoming Huang. Bimetallic AgNi nanoparticles anchored onto MOF-derived nitrogen-doped carbon nanostrips for efficient hydrogen evolution.  Green Energy&Environment, 2023, 8(1): 258-266. doi: 10.1016/j.gee.2021.04.003
    [10]Qiao Luo, Congcong Lu, Lingran Liu, Maiyong Zhu. A review on the synthesis of transition metal nitride nanostructures and their energy related applications.  Green Energy&Environment, 2023, 8(2): 406-437. doi: 10.1016/j.gee.2022.07.002
    [11]Xiaoqiang Du, Yangyang Ding, Xiaoshuang Zhang. MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis.  Green Energy&Environment, 2023, 8(3): 798-811. doi: 10.1016/j.gee.2021.09.007
    [12]Yanlin Qin, Yunzhen Chen, Xuezhi Zeng, Yingchun Liu, Xuliang Lin, Wenli Zhang, Xueqing Qiu. MoNi4-NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction.  Green Energy&Environment, 2023, 8(6): 1728-1736. doi: 10.1016/j.gee.2022.04.005
    [13]Revanasiddappa Manjunatha, Li Dong, Zibo Zhai, Jianyi Wang, Qianru Fu, Wei Yan, Jiujun Zhang. Pd nanocluster-decorated CoFe composite supported on nitrogen carbon nanotubes as a high-performance trifunctional electrocatalyst.  Green Energy&Environment, 2022, 7(5): 933-947. doi: 10.1016/j.gee.2020.12.005
    [14]Yuantao Pei, Liang Huang, Lei Han, Haijun Zhang, Longhao Dong, Quanli Jia, Shaowei Zhang. NiCoP/NiOOH nanoflowers loaded on ultrahigh porosity Co foam for hydrogen evolution reaction under large current density.  Green Energy&Environment, 2022, 7(3): 467-476. doi: 10.1016/j.gee.2020.10.019
    [15]Yanze Wu, Yalan Liu, Kui Liu, Lin Wang, Lei Zhang, Degao Wang, Zhifang Chai, Weiqun Shi. Hierarchical and self-supporting honeycomb LaNi5 alloy on nickel foam for overall water splitting in alkaline media.  Green Energy&Environment, 2022, 7(4): 799-806. doi: 10.1016/j.gee.2021.09.005
    [16]Wenqing Yao, Xian Jiang, Yulian Li, Cuiting Zhao, Linfei Ding, Dongmei Sun, Yawen Tang. N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting.  Green Energy&Environment, 2022, 7(5): 1111-1118. doi: 10.1016/j.gee.2021.01.011
    [17]Guang Liu, Yun Wu, Rui Yao, Fei Zhao, Qiang Zhao, Jinping Li. Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting.  Green Energy&Environment, 2021, 6(4): 496-505. doi: 10.1016/j.gee.2020.05.009
    [18]Jin-Tao Ren, Yali Yao, Zhong-Yong Yuan. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: Recent advances.  Green Energy&Environment, 2021, 6(5): 620-643. doi: 10.1016/j.gee.2020.11.023
    [19]Haishun Jiang, Siyu Zhao, Wenyao Li, Tobias P. Neville, Isil Akpinar, Paul R. Shearing, Dan J.L. Brett, Guanjie He. Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions.  Green Energy&Environment, 2020, 5(4): 506-512. doi: 10.1016/j.gee.2020.07.009
    [20]Yi Peng, Shaowei Chen. Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview.  Green Energy&Environment, 2018, 3(4): 335-351. doi: 10.1016/j.gee.2018.07.006
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.9 %FULLTEXT: 26.9 %META: 67.0 %META: 67.0 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.3 %其他: 3.3 %Belgium: 1.3 %Belgium: 1.3 %China: 54.5 %China: 54.5 %Germany: 1.5 %Germany: 1.5 %India: 2.6 %India: 2.6 %Poland: 1.0 %Poland: 1.0 %Seychelles: 0.3 %Seychelles: 0.3 %Singapore: 0.8 %Singapore: 0.8 %Slovakia (SLOVAK Republic): 0.8 %Slovakia (SLOVAK Republic): 0.8 %Switzerland: 1.5 %Switzerland: 1.5 %Taiwan, China: 1.8 %Taiwan, China: 1.8 %United States: 30.7 %United States: 30.7 %其他BelgiumChinaGermanyIndiaPolandSeychellesSingaporeSlovakia (SLOVAK Republic)SwitzerlandTaiwan, ChinaUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (261) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return