Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Zhongping Yao, Kailun Yu, Mengyao Pan, Hongbo Xu, Tianqi Zhao, Zhaohua Jiang. A mechanically durable, excellent recyclable 3D hierarchical Ni3S2@Ni foam photothermal membrane. Green Energy&Environment, 2022, 7(3): 492-499. doi: 10.1016/j.gee.2020.10.010
Citation: Zhongping Yao, Kailun Yu, Mengyao Pan, Hongbo Xu, Tianqi Zhao, Zhaohua Jiang. A mechanically durable, excellent recyclable 3D hierarchical Ni3S2@Ni foam photothermal membrane. Green Energy&Environment, 2022, 7(3): 492-499. doi: 10.1016/j.gee.2020.10.010

A mechanically durable, excellent recyclable 3D hierarchical Ni3S2@Ni foam photothermal membrane

doi: 10.1016/j.gee.2020.10.010
  • Solar-driven water evaporation is considered to be a viable and very efficient technology for fresh water production. Unfortunately, the photothermal membrane has a low absorptivity, low photothermal conversion and poor recyclability, which are difficult to meet the demands of self-floating solar driven evaporators in practical applications. Herein, a hierarchical nanostructure Ni3S2 has been prepared by in-situ growing method on Ni foam (NF), which shows excellent absorptivity, outstanding recyclable and high mechanically durable properties. The photothermal membrane was composed of hierarchical nanostructure Ni3S2@NF, which exhibited excellent solar absorption (93.13%) in the wavelength range of 250 -2500 nm and sustained anti-corrosion capacity for one month. In addition, the hierarchical nanostructure Ni3S2 @NF has good hydrophilicity and strong binding force, indicating this photothermal membrane exhibits good stability and outstanding photothermal conversion efficiency. An evaporation system based on 3D Ni3S2@NF membrane exhibited excellent water evaporation ability,the highest water evaporation rate (1.53 kg m−2 h−1) and the photothermal conversion efficiency (84.7%) under 1 sun illumination. In the desalination experiment, the water evaporation rate and photothermal conversion efficiency almost keep constant over 5 cycles tests and do not decrease compared with the experiment in pure water. This result demonstrated that the Ni3S2@NF membrane has shown good corrosion resistance and outstanding recyclability. Due to the simple preparation method, low cost, outstanding recyclability and high mechanical durability in the sea water, this Ni3S2@NF membrane have great potential for long-term solar distillation applications.

     

  • loading
  • [1]
    P. J. J. Alvarez, C. K. Chan, M. Elimelech, N. J. Halas, Nat. Nanotechnol. 13 (2018) 634-641.
    [2]
    G. Liu, J. Xu, K. Wang, Nano Energy 41 (2017) 269-284.
    [3]
    L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Mater. Horizons 5 (2018) 323-343.
    [4]
    W. Shang, T. Deng, Nat. Energy 1 (2016) 16133 (1-3).
    [5]
    X. Wang, Y. He, G. Cheng, L. Shi, X. Liu, J. Zhu, Energy Conv. Manag. 130 (2016) 176-183.
    [6]
    X. Li, J. Li, J. Lu, N. Xu, C. Chen, X. Min, B. Zhu, H. Li, L. Zhou, S. Zhu, T. Zhang, J. Zhu, Joule 2 (2018) 1331-1138.
    [7]
    L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics 10 (2016) 393-398.
    [8]
    H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, H. Peng, Z. Liu, Adv. Mater. 29 (2017) 1702590 (1-6).
    [9]
    F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol.13 (2018) 489-495.
    [10]
    Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Adv. Energy Mater. 8 (2018) 1702149 (1-7).
    [11]
    L. Zhou, S. Zhuang, C. He, Z. Wang, Nano Energy 32 (2017) 195-200.
    [12]
    K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Nat. Commun. 6 (2015) 10103(1-8).
    [13]
    C. Liu, J. Huang, C. Hsiung, Y. Tian, J. Wang, Y. Han, Adv. Sustainable Syst. 1 (2017) 1600013 (1-6).
    [14]
    S. Zhou, S. Wang, S. Zhou, H. Xu, J. Zhao, J. Wang, Y. Li, Nanoscale 12 (2020) 8934-8941.
    [15]
    H. Xu, L. Liu, F. Teng, N. Lu, Research, 2019 (2019) 3495841(1-8).
    [16]
    J. Yang, H. Zhang, J Jia, X. Zhang, X. Ma, M. Zhong, Z. Ou, Research 2018, (2018) 5439729(1-8).
    [17]
    Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, Adv. Mater. 27 (2015) 4302-4307.
    [18]
    Z. Hua, B. Li, L. Li, X. Yin, K. Chen, W. Wang, J. Phys. Chem. C 121 (2017) 60-69.
    [19]
    Y. Lin, H. Xu, X. Shan, Y. Di, A. Zhao, Y. Hu, Z. X. Gan, J. Mater. Chem. A, 7 (2019) 19203-19227.
    [20]
    X. Shan, A. Zhao, Y. Lin, Y. Hu, Y. Di, C. Liu, Z. X. Gan, Adv. Sustainable Syst. 2020, 1900153.
    [21]
    G. Zhu, J. Xu, W. Zhao, F. Huang, ACS Appl. Mater. Interfaces 8 (2016) 31716-31721.
    [22]
    J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, Adv. Mater. 29 (2016) 1603730 (1-6).
    [23]
    Z.W. Seh, S. Liu, M. Low, S. Zhang, Z. Liu, A. Mlayah, M. Han, Adv. Mater. 24 (2012) 107-120.
    [24]
    G. Wang, Y. Fu, X. Ma, W. Pi, D. Liu, X. Wang, Carbon 114 (2017) 117-124.
    [25]
    L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Adv. Energy Mater. 8 (2018) 1702149-1702157.
    [26]
    X. Li, Z. Yao, J. Wang, D. Li, K. Yu, Z. Jiang, ACS Appl. Energy Mater. 2 (2019) 5154-5161.
    [27]
    C. Xue, S. Hu, Q. Chang, N. Li, Y. Wang, W. Liu, J. Yang, J. Mater. Sci. 53 (2018) 9742-9754.
    [28]
    M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P.G. O'Brien, W. Sun, Y. Dong, G.A. Ozin, Adv. Energy Mater. 7 (2017) 1601811 (1-7).
    [29]
    Y. Li, T. Yi, S. Luo, Mater. Lett. 233 (2018) 220-223.
    [30]
    D. Zha, Y. Fua, L. Zhang, J. Zhu, X. Wang, J. Power Sources 378 (2018) 31-39.
    [31]
    Y. Niu, W. Li, X. Wu, B. Feng, Y. Yu, W. Hu, C. Li, J. Mater. Chem. A 7 (2019) 10534-10542.
    [32]
    H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, H. Peng, Z. Liu, Adv. Mater. 29 (2017) 1702590 (1-7).
    [33]
    P. Wang, Y. Gu, L. Miao, J. Zhou, H. Su, A. Wei, X. Mu, Y. Tian, J. Shi, H. Cai, Sus. Mater. Tech. 20 (2019) e00106 (1-7).
    [34]
    X. Shan, Y. Lin, A. Zhao, Y. Di, Y. Hu, Y. Guo, Z. Gan, Nanotechnology 30 (2019) 425403 (1-5).
    [35]
    S. Majid, K. S. Ahmad, Optik 187 (2019) 152-163.
    [36]
    T. F. Yi, L. Y. Qiu, J. Mei, S. Y. Qi, P. Cui, S. H. Luo, Y. R. Zhu, Y. Xie, Y. B. He, Sci. Bull. 65 (2020) 546-556.
    [37]
    Y. M. Li, J. J. Pan, J. Z. Wu, T. F. Yi, Y. Xie, J. Energy Chem. 31 (2019) 167-177;.
    [38]
    T. F. Yi, J. Mei, B. L. Guan, P. Cui, S. H. Luo, Y. Xie, Y. G. Liu, Ceram. Int. 46 (2020) 421-429.
    [39]
    F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L.H. Li, A. Fiore, M. Gurioli, D. S. Wiersma, Nat. Mater. 13 (2014) 720-725.
    [40]
    K. Yu, X. Tan, Y. Hu, F. Chen, S. Li, Corrosion Sci. 53 (2011) 2035-2040.
    [41]
    Y. W. Lin, W. P. Zhou, Y. S. Di, X. W. Zhang, L. Yang, Z. X. Gan, AIP Advances 9, (2019), 055110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (135) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return