Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Gaopeng Liu, Bin Wang, Lin Wang, Wenxian Wei, Yu Quan, Chongtai Wang, Wenshuai Zhu, Huaming Li, Jiexiang Xia. MOFs derived FeNi3 nanoparticles decorated hollow N-doped carbon rod for high-performance oxygen evolution reaction. Green Energy&Environment, 2022, 7(3): 423-431. doi: 10.1016/j.gee.2020.10.007
Citation: Gaopeng Liu, Bin Wang, Lin Wang, Wenxian Wei, Yu Quan, Chongtai Wang, Wenshuai Zhu, Huaming Li, Jiexiang Xia. MOFs derived FeNi3 nanoparticles decorated hollow N-doped carbon rod for high-performance oxygen evolution reaction. Green Energy&Environment, 2022, 7(3): 423-431. doi: 10.1016/j.gee.2020.10.007

MOFs derived FeNi3 nanoparticles decorated hollow N-doped carbon rod for high-performance oxygen evolution reaction

doi: 10.1016/j.gee.2020.10.007
  • The sluggish electrochemical oxygen evolution reaction (OER) is a crucial process for clean energy conversion technology. The preparation of non-precious electrocatalysts with high performance for OER is still a main challenge. Herein, we report a FeNi3 nanoparticles incorporated on N-doped hollow carbon rod with extraordinary performance toward OER by in situ annealing the Ni-doped Fe based metal-organic frameworks (MOFs) precursors. Meanwhile, the pristine N atoms of MOFs doped into carbon frameworks can enhance the electrical conductivity, boost electron mass transport and electron transfer, and construct more active sites. Furthermore, constructing the Fe-Ni alloy structure can facilitate the formation of O-O bond, optimize the free energy for intermediate adsorption and improve OER performance. The as-prepared Fe-Ni bimetal decorated hollow N-doped nanocarbon hybrid structure possesses superior OER performance, which is surpass commercial IrO2 at a overpotential of only 340 mV to achieve the current density of 10 mA cm−2, as well as a small Tafel slope of 86.67 mV dec−1 in alkaline electrolyte. The Fe-Ni alloy/hollow N-doped nanocarbon hybrid structure shining the bright future for obtaining earth-abundant and superior efficient anode OER electrocatalyst.

     

  • loading
  • [1]
    K.Y. Zhu, X.F. Zhu, W.S. Yang, Angew. Chem. Int. Ed., 58 (2019) 1252-1265.
    [2]
    G.P. Liu, B. Wang, P.H. Ding, Y.Z. Ye, W.X. Wei, W.S. Zhu, L. Xu, J.X. Xia, H.M. Li, J. Alloy. Compd. 797 (2019) 849-858.
    [3]
    G. Liu, Y. Wu, R. Yao, F. Zhao, Q. Zhao, J.P. Li, Green Energy & Environment (2020) DOI: 10.1016/j.gee.2020.05.009.
    [4]
    D. Wang, D. Astruc, Chem. Soc. Rev. 46 (2017) 816-854.
    [5]
    Q.Z. Qian, Y.P. Li, Y. Liu, G.Q. Zhang, Appl. Catal. B 266 (2020) 118642.
    [6]
    H.X. Zhang, J.Y. Wang, Q.L. Cheng, P. Saha, H. Jiang, Green Energy & Environment (2020) DOI: 10.1016/j.gee.2020.07.010.
    [7]
    B.C. Qiu, L.J. Cai, Y. Wang, Z.Y. Lin, Y.P. Zuo, M.Y. Wang, Y. Chai, Adv. Funct. Mater. 28 (2018) 1706008.
    [8]
    Z.C. Liu, G. Zhang, K. Zhang, H.J. Liu, J.H. Qu, ACS Sustain. Chem. Eng. 6 (2018) 7206-7211.
    [9]
    J.Y. Liu, L. Xu, Y.L. Deng, X.W. Zhu, J.J. Deng, J.B. Lian, J.J. Wu, J.C. Qian, H.Xu, S.Q. Yuan, H.M. Li, P.M. Ajayan, J. Mater. Chem. A 7 (2019) 14291-14301.
    [10]
    F. Song, L.C. Bai, A. Moysiadou, S.Lee, C. Hu, L. Liardet, X.L. Hu, J. Am. Chem. Soc. 140 (2018) 7748-7759.
    [11]
    G.P. Liu, B. Wang, P.H. Ding, W.X. Wei, Y.Z. Ye, L. Wang, W.S. Zhu, H.M. Li, J.X. Xia, J. Alloy. Compd. 815 (2020) 152470.
    [12]
    L.H. Li, L. Song, H. Guo, W. Xia, C. Jiang, B. Gao, C. Wu, T. Wang, J.P. He, Nanoscale 11 (2019) 901-907.
    [13]
    Q. Zhang, X.L. Li, B.X. Tao, X.H. Wang, Y.H. Deng, X.Y. Gu, L.J. Li, W. Xiao, N.B. Li, H.Q. Luo, Appl. Catal. B 254 (2019) 634-646.
    [14]
    P. Zhu, J.X. Gao, S. Liu, J. Power Sources 449 (2020) 227512.
    [15]
    C. H. Wang, H.C. Yang, Y.J. Zhang, Q.B. Wang, Angew. Chem. Int. Ed. 58 (2019) 6099-6103.
    [16]
    A.Q. Wang, Z.L. Zhao, D. Hu, J.F. Niu, M. Zhang, K. Yan, G. Lu, Nanoscale 11 (2019) 426-430.
    [17]
    D.D. Babu, Y.Y. Huang, G. Anandhababu, X. Wang, R. Si, M.X. Wu, Q.H. Li, Y.B. Wang, J.N. Yao, J. Mater. Chem. A 7 (2019) 8376-8383.
    [18]
    S.J. Guo, S. Zhang, L.H. Wu, S.H. Sun, Angew. Chem. Int. Ed. 51 (2012) 11770-11773.
    [19]
    Y.L. Lv, A. Batool, Y.X. Wei, Q. Xin, R. Boddula, S.U. Jan, M.Z. Akram, L.Q. Tian, B.D. Guo, J.R. Gong, ChemElectroChem 6 (2019) 2497-2502.
    [20]
    P. Wei, X.P. Sun, Q.R. Liang, X.G. Li, Z.M. He, X.S. Hu, J.X. Zhang, M.H. Wang, Q. Li, H. Yang, J.T. Han, Y.H. Huang, ACS Appl. Mater. Interfaces 12 (2020) 31503-31513.
    [21]
    G.L. Li, B.B. Yang, X.C. Xu, S. Cao, Y.T. Shi, Y. Yan, X.D. Song, C. Hao, Chem. Eur. J. 26 (2020) 1-8.
    [22]
    B. Wang, L. Xu, G.P. Liu, P.F. Zhang, W.S. Zhu, J.X. Xia, H.M. Li, J. Mater. Chem. A 5 (2017) 20170-20179.
    [23]
    J.Y. Liu, H. Xu, H.P. Li, Y.H. Song, J.J. Wu, Y.J. Gong, L. Xu, S.Q. Yuan, H.M. Li, P.M. Ajayan, Appl. Catal. B 243 (2019) 151-160.
    [24]
    R.F. Nie, J.W. Chen, M.D. Chen, Z.Y. Qi, T.W. Goh, T. Ma, L. Zhou, Y.C. Pei, W.Y. Huang, Green Chem. 21 (2019) 1461-1466.
    [25]
    K. Gao, B. Wang, L. Tao, B.V. Cunning, Z.P. Zhang, S.Y. Wang, R.S. Ruoff, L.T. Qu, Adv. Mater. 31 (2019) 1805121.
    [26]
    S.L. Zhao, M. Li, M. Han, D.D. Xu, J. Yang, Y. Lin, N.E. Shi, Y.A. Lu, R. Yang, B.T. Liu, Z.H. Dai, J.C. Bao, Adv. Funct. Mater. 28 (2018) 1706018.
    [27]
    S.A. Shah, Z.Y. Ji, X.P. Shen, X.Y. Yue, G.X. Zhu, K.Q. Xu, A.H. Yuan, N. Ullah, J. Zhu, P. Song, X.Y. Li, ACS Appl. Energy Mater. 2 (2019) 4075-4083.
    [28]
    X. Zhang, C. Li, T.F. Si, H. Lei, C.B. Wei, Y.F. Sun, T.R. Zhan, Q.Y. Liu, J.X. Guo, ACS Sustain. Chem. Eng. 67 (2018) 8266-8273.
    [29]
    D.N. Ding, K. Shen, X.D. Chen, H.R. Chen, J.Y. Chen, T. Fan, R.F. Wu, Y.W. Li, ACS Catal. 8 (2018) 7879-7888.
    [30]
    Y. Fu, W.J. Wang, J.W. Wang, X.N. Li, R. Shi, O. Peng, B.N. Chandrashekar, K. Liu, A. Amini, C. Cheng, J. Mater. Chem. A 7 (2019) 17299-17305.
    [31]
    Y. F. Lin, G. Chen, H. Wan, F. S. Chen, X. H. Liu, R. Z. Ma, Small, 2019, 15, 1900348.
    [32]
    Z.Q. Xie, Y. Wang, Electrochim. Acta 296 (2019) 372-378.
    [33]
    Y.J. Han, J.F. Zhai, L.L. Zhang, S.J. Dong, Nanoscale 8 (2016) 1033-1039.
    [34]
    X.X. Zheng, L.J. Shen, X.P. Chen, X.H. Zheng, C.T. Au, L.L. Jiang, Inorg. Chem. 57 (2018) 10081-10089.
    [35]
    N. Liedana, P. Lozano, A. Galve, C. Tellez, J. Coronas, J. Mater. Chem. B 2 (2014) 1144-1151.
    [36]
    L.L. Qu, J. Wang, T.Y. Xu, Q.Y. Chen, J.H. Chen, C.J. Shi, Sustain. Energy Fuels 2 (2018) 2109-2114.
    [37]
    X.T. Jiang, W.L. Guo, P.Y. Lu, D. Song, A.R. Guo, J.C. Liu, J. Liang, F. Hou, Int. J. Hydrog. Energy 43 (2018) 14027-14033.
    [38]
    X.D. Yan, L.H. Tian, K.X. Li, S. Atkins, H.F. Zhao, J. Murowchick, L. Liu, X.B. Chen, Adv. Mater. Interfaces 3 (2016) 1600368.
    [39]
    H.J. Wu, Z.H. Zhao, G.L. Wu, J. Colloid Interface Sci. 566 (2020) 21-32.
    [40]
    Z. Liu, X. Yu, H.G. Yu, H.G. Xue, L.G. Feng, ChemSusChem 11 (2018) 2703-2709.
    [41]
    J.J. Wang, H.C. Zeng, ACS Appl. Mater. Interfaces 11 (2019) 23180-23191.
    [42]
    A. Jayakumar, R.P. Antony, J. Zhao, J.M. Lee, Electrochim. Acta 265 (2018) 336-347.
    [43]
    B. Wang, Y.Z. Ye, L. Xu, Y. Quan, W.X. Wei, W.S. Zhu, H.M. Li, J.X. Xia, Adv. Funct. Mater. 2020, 2005834.
    [44]
    I.S. Amiinu, X.B. Liu, Z.H. Pu, W.Q. Li, Q.D. Li, J. Zhang, H.L. Tang, H.N. Zhang, S.C. Mu, Adv. Funct. Mater. 28 (2018) 1704638.
    [45]
    X.L. Hu, G. Luo, Q.N. Zhao, D. Wu, T.X. Yang, J. Wen, R.H. Wang, C.H. Xu, N. Hu, J. Am. Chem. Soc. (2020) DOI: 10.1021/jacs.0c07317.
    [46]
    Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 4 (2013) 2390.
    [47]
    J.X. Han, X.Y. Meng, L. Lu, J.J. Bian, Z.P. Li, C.W. Sun, Adv. Funct. Mater. 29 (2019)1808872.
    [48]
    Q.Q. Song, J.Q. Li, S.L. Wang, J.L. Liu, X.X. Liu, L.Y. Pang, H. Li, H. Liu, Small 15 (2019) 1903395.
    [49]
    M.L. Yuan, Y. Sun, Y. Yang, J.X. Zhang, S. Dipazir, T.K. Zhao, S.W. Li, Y.B. Xie, H. Zhao, Z.J. Liu, G.J. Zhang, Green Energy & Environment (2020) DOI: 10.1016/j.gee.2020.07.012.
    [50]
    C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du, Q. Jiang, Adv. Funct. Mater. 29 (2019) 1901949.
    [51]
    L. L. Wen, J. Yu, C. C. Xing, D. L. Liu, X. J. Lyu, W. P. Cai, X. Y. Li, Nanoscale, 2019, 11, 4198-4203.
    [52]
    B. Wang, L. Xu, G.P. Liu, Y.Z. Ye, Y. Quan, C.T. Wang, W.X. Wei, W.S. Zhu, C.X. Xu, H.M. Li, J.X. Xia, J. Alloy. Compd. 826 (2020) 154152.
    [53]
    H.S. Jiang, S.Y. Zhao, W.Y. Li, T.PNeville, I. Akpinar, P.R. Shearing, D.J.L. Brett, G.J. He, Green Energy Environ (2020) DOI: 10.1016/j.gee.2020.07.009.
    [54]
    X.J. Cui, P.J. Ren, D.H. Deng, J. Deng, X.H. Bao, Energy Environ. Sci. 9 (2016) 123-129.
    [55]
    X.C. Ma, K. Qi, S.T. Wei, L. Zhang, X.Q. Cui, J. Alloy. Compd. 770 (2019) 236-242.
    [56]
    Y. D. Ma, Y. Yang, X.P. Dai, X.B. Luan, J.X. Yong, H.Y. Qiao, H.H. Zhao, M.L. Cui, X. Zhang, X.L. Huang, Chem. Eur. J. 24 (2018) 18689-18695.
    [57]
    Y.J. Zhou, Y.H. Li, L.X. Zhang, L.L. Zhang, L. Li, J.J. Tian, M. Wang, J.Y. Xu, B. Dai, Y.S. Li, Chem. Eng. J. 394 (2020) 124977.
    [58]
    H.Y. Meng, Z.Y. Ren, S.C. Du, J. Wu, X. Yang, Y.Z. Xue, H.G. Fu, Nanoscale 18 (2018) 10971-10978.
    [59]
    S.F. Fu, J.H. Song, C.Z. Zhu, G.L. Xu, K. Amine, C.J. Sun, X.L. Li, M.H. Engelhard, D. Du, Y.H. Lin, Nano Energy 44 (2018) 319-326.
    [60]
    B.K. Kang, S.Y. Im, J.Y. Lee, S.H. Kwag, S.B. Kwon, S. Tiruneh, M.J. Kim, J. H. Kim, W.S. Yang, B. Lim, D.H. Yoon, Nano Res. 12 (2019)1605-1611.
    [61]
    X.P. Sun, S.X. Sun, S.Q. Gu, Z.F. Liang, J.X. Zhang, Y.Q. Yang, Z. Deng, P. Wei, J. Peng, Y. Xu, C. Fang, Q. Li, J.T. Han, Z. Jiang, Y.H. Huang, Nano Energy 61 (2019) 245-250.
    [62]
    X.R. Gao, Y. Yu., Q.R. Liang, Y.J. Pang, L.Q. Miao, X.M. Liu, Z.K. Kou, J.Q. He, S.J. Pennycook, S.C. Mu, J. Wang, Appl. Catal. B 270 (2020) 118889.
    [63]
    K. Fu, Y. Wang, L.C. Mao, X.X. Yang, J.H. Jin, S.L. Yang, G. Li, Chem. Eng. J. 351 (2018) 94-102.
    [64]
    J.S. Meng, C.J. Niu, L. H. Xu, J.T. Li, X. Liu, X.P. Wang, Y.Z. Wu, X.M. Xu, W.Y. Chen, Q. Li, Z.Z. Zhu, D.Y. Zhao, L.Q. Mai, J. Am. Chem. Soc. 139 (2017) 8212-8221.
    [65]
    Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang, Q. Chen, ACS Catal. 7 (2017) 469-479
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (283) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return