Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Sung Ho Park, Sang Joon Lee. Thermoresponsive Al3+-crosslinked poly(N-isopropylacrylamide)/alginate composite for green recovery of lithium from Li-spiked seawater. Green Energy&Environment, 2022, 7(2): 334-344. doi: 10.1016/j.gee.2020.10.006
Citation: Sung Ho Park, Sang Joon Lee. Thermoresponsive Al3+-crosslinked poly(N-isopropylacrylamide)/alginate composite for green recovery of lithium from Li-spiked seawater. Green Energy&Environment, 2022, 7(2): 334-344. doi: 10.1016/j.gee.2020.10.006

Thermoresponsive Al3+-crosslinked poly(N-isopropylacrylamide)/alginate composite for green recovery of lithium from Li-spiked seawater

doi: 10.1016/j.gee.2020.10.006
  • With the rapid increase in the demand for lithium as an energy-critical element, the recovery of Li+ ions from seawater is a worldwide challenging issue. Herein, we propose a new facile and fast selective recovery approach of Li+ using an Al3+-crosslinked poly(N-isopropylacrylamide) (PNIPAAm)/alginate (Alg) (PNP/Alg(Al)) adsorbent. The in situ TEM images indicate that Alg–Al3+ coordination is reorganized via the rearrangement of PNIPAAm and Alg networks, as the temperature increases. The reorganization eventually leads to the formation of polycrystalline structure. The in situ FTIR results exhibit that PNP/Alg(Al) composite has peculiar phase transitions, which includes a retrogressive phase change from hydrophobic to hydrophilic. The synergetic effect of the strong repulsion force of Al3+ ions and the attractive force of negatively charged polymeric chains enables the efficient adsorption of Li+ ions with a low affinity from Li-spiked seawater. 7.3% of Li+ ions are recovered from Li-spiked seawater although the concentration of Li-spiked seawater is very high. In addition, Li+ ions can be extracted from PNP/Alg(Al) composite with the use of a small thermal energy. The proposed thermoresponsive IPN gel provides a strong potential in practical applications for Li+ recovery as an innovative energy-material strategy.

     

  • loading
  • [1]
    T. Hoshino, Desalination 359(2015) 59-63.
    [2]
    C. Shi, Y. Jing, J. Xiao, X. Wang, Y. Yao, Y. Jia, Sep. Purif. Technol. 172(2017) 473-479.
    [3]
    Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133(2013) 75-83.
    [4]
    H. Park, N. Singhal, E.H. Jho, Water Res. 87(2015) 320-327.
    [5]
    A. Razmjou, M. Asadnia, E. Hosseini, A.H. Korayem, V. Chen, Nat. Commun. 10(2019) 5793.
    [6]
    N.T.T. Uyen, Z.a.A. Hamid, N.X.T. Tram, N. Ahmad, Int. J. Biol. Macromol. 153(2020) 1035-1046.
    [7]
    A.C. Hernández-González, L. Téllez-Jurado, L.M. Rodríguez-Lorenzo, Carbohydr. Polym. 229(2020) 115514.
    [8]
    D. Kang, Q. Liu, J. Gu, Y. Su, W. Zhang, D. Zhang, ACS Nano 9(2015) 11225-11233.
    [9]
    D. Kang, Q. Liu, M. Chen, J. Gu, D. Zhang, ACS Nano 10(2016) 889-898.
    [10]
    S. Tang, J. Yang, L. Lin, K. Peng, Y. Chen, S. Jin, W. Yao, Chem. Eng. J. 393(2020) 124728.
    [11]
    Y. Zhao, Y. Chen, J. Zhao, Z. Tong, S. Jin, Sep. Purif. Technol. 188(2017) 329-340.
    [12]
    J.-Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Nature 489(2012) 133-136.
    [13]
    X. Jiang, N. Xiang, H. Zhang, Y. Sun, Z. Lin, L. Hou, Carbohydr. Polym. 186(2018) 377-383.
    [14]
    D. Wu, Y. Gao, W. Li, X. Zheng, Y. Chen, Q. Wang, ACS Sustain. Chem. Eng. 4(2016) 6732-6743.
    [15]
    H. Luo, X. Zeng, P. Liao, H. Rong, T.C. Zhang, Z.J. Zhang, X. Meng, Int. J. Biol. Macromol. 126(2019) 1133-1144.
    [16]
    S.H. Park, S.J. Lee, Adv. Funct. Mater. 29(2019) 1904016.
    [17]
    R. Pamies, R.R. Schmidt, M.D.C.L. Martínez, J.G.D.L. Torre, Carbohydr. Polym. 80(2010) 248-253.
    [18]
    H. Kaygusuz, G.A. Evingür, Ø. Pekcan, R. Von Klitzing, F.B. Erim, Int. J. Biol. Macromol. 92(2016) 220-224.
    [19]
    G. Kaklamani, D. Cheneler, L.M. Grover, M.J. Adams, J. Bowen, J. Mech. Behav. Biomed. Mater. 36(2014) 135-142.
    [20]
    O.K. Vorov, D.R. Livesay, D.J. Jacobs, Entropy 10(2008) 285-308.
    [21]
    L.V. Karabanova, G. Boiteux, O. Gain, G. Seytre, L.M. Sergeeva, E.D. Lutsyk, Polym. Int. 53(2004) 2051-2058.
    [22]
    R.L. Baldwin, J. Mol. Biol. 371(2007) 283-301.
    [23]
    J. Brus, M. Urbanova, J. Czernek, M. Pavelkova, K. Kubova, J. Vyslouzil, S. Abbrent, R. Konefal, J. Horský, D. Vetchy, Biomacromolecules 18(2017) 2478-2488.
    [24]
    J. Zhao, K. Jiao, J. Yang, C. He, H. Wang, Polymer 54(2013) 1596-1602.
    [25]
    S. Gallagher, A. Kavanagh, B. Zíołkowski, L. Florea, D.R. Macfarlane, K. Fraser, D. Diamond, Phys. Chem. Chem. Phys. 16(2014) 3610-3616.
    [26]
    A.M. Popa, S. Angeloni, T. BüRgi, J.A. Hubbell, H. Heinzelmann, R. Pugin, Langmuir 26(2010) 15356-15365.
    [27]
    S. Lanzalaco, E. Armelin, Gels 3(2017) 36.
    [28]
    A. Percot, X. Zhu, M. Lafleur, J. Polym. Sci. Pt. B Polym. Phys. 38(2000) 907-915.
    [29]
    B. Sun, Y. Lin, P. Wu, H.W. Siesler, Macromolecules 41(2008) 1512-1520.
    [30]
    M.H. Futscher, M. Philipp, P. Müller Buschbaum, A. Schulte, Sci. Rep. 7(2017) 6017.
    [31]
    G. Li, S. Song, T. Zhang, M. Qi, J. Liu, Int. J. Biol. Macromol. 62(2013) 203-210.
    [32]
    R.P. Dumitriu, A.M. Oprea, C. Natalia Cheaburu, M.T. Nistor, O. Novac, C.M. Ghiciuc, L. Profire, C. Vasile, J. Appl. Polym. Sci. 131(2014) 40733.
    [33]
    L. Alagna, T. Prosperi, A.A. Tomlinson, R. Rizzo, J. Phys. Chem. 90(1986) 6853-6857.
    [34]
    C.K. Kim, E.J. Lee, Int. J. Pharm. 79(1992) 11-19.
    [35]
    Y.S. Kim, H.M. Lee, J.H. Kim, J. Joo, I.W. Cheong, RSC Adv. 5(2015) 10656-10661.
    [36]
    X.-Z. Zhang, C.-C. Chu, Chem. Commun. 3(2004) 350-351.
    [37]
    F.C. Nachod, Ion Exchange: Theory and Application, 1st ed., Academic Press, Cambridge, 1956.
    [38]
    G.M. Geise, D.R. Paul, B.D. Freeman, Prog. Polym. Sci. 39(2014) 1-42.
    [39]
    X. Luo, B. Guo, J. Luo, F. Deng, S. Zhang, S. Luo, J. Crittenden, ACS Sustain. Chem. Eng. 3(2015) 460-467.
    [40]
    Y. Huang, R. Wang, Chem. Eng. J. 378(2019) 122084.
    [41]
    S.H. Park, S.J. Lee, J. Mol. Struct. 1187(2019) 172-178.
    [42]
    L. Tang, S. Huang, Y. Wang, D. Liang, Y. Li, J. Li, Y. Wang, Y. Xie, W. Wang, ACS Appl. Mater. Interfaces 12(2020) 9775-9781.
    [43]
    H. Wang, J. Cui, M. Li, Y. Guo, T. Deng, X. Yu, Chem. Eng. J. 389(2020) 124410.
    [44]
    X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Prog. Mater. Sci. 84(2016) 276-313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return