Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Yiru Zou, Chao Wang, Hanxiang Chen, Haiyan Ji, Qian Zhu, Wenshu Yang, Linlin Chen, Zhigang Chen, Wenshuai Zhu. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization. Green Energy&Environment, 2021, 6(2): 169-175. doi: 10.1016/j.gee.2020.10.005
Citation: Yiru Zou, Chao Wang, Hanxiang Chen, Haiyan Ji, Qian Zhu, Wenshu Yang, Linlin Chen, Zhigang Chen, Wenshuai Zhu. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization. Green Energy&Environment, 2021, 6(2): 169-175. doi: 10.1016/j.gee.2020.10.005

Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization

doi: 10.1016/j.gee.2020.10.005
  • In recent years, transition-metal oxides (TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk TMOs catalyst. In this study, V2O5 nanoparticles with oxygen vacancies were prepared in large-scale via facile ball milling strategy with adding oxalic acid as a reducing agent. The as-prepared catalysts exhibit remarkable sulfur removal for oils with different initial S-concentrations and different substrates. Sulfur removal could reach up to 99.7% (< 2 ppm) under the optimized reaction conditions. This work provides a feasible desulfurization strategy for fuel oils.

     

  • loading
  • [1]
    S.H. Xun, W.S. Zhu, Y.H. Chang, H.P. Li, M. Zhang, W. Jiang, D. Zheng, Y.J. Qin, H.M. Li, Chem. Eng. J. 288 (2016) 608-617.
    [2]
    Y. Song, W. Lin, X.C. Guo, L.L. Dong, X.D. Mu, H.P. Tian, L. Wang, Green Energy Environ.. 4 (2019) 75-82.
    [3]
    R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E.F. Kozhevnikova, I.V. Kozhevnikov, Appl. Catal. B Environ. 253 (2019) 309-316.
    [4]
    M. Zhang, J.Q. Liu, H.P. Li, Y.C. Wei, Y.J. Fu, W.Y. Liao, L.H. Zhu, G.Y. Chen, W.S. Zhu, H.M. Li, Appl. Catal. B Environ. 271 (2020) 118936.
    [5]
    J. Xiong, H.M. Li, L. Yang, J. Luo, Y.H. Chao, J.Y. Pang, W.S. Zhu, AIChE J.. 63 (2017) 3463-3469.
    [6]
    H.P. Li, B.B. Zhang, W. Jiang, W.S. Zhu, M. Zhang, C. Wang, J.Y. Pang, H.M. Li, Green Energy Environ. 4 (2019) 38-48.
    [7]
    M.A. Astle, G.A. Rance, H.J. Loughlin, T.D. Peters, A.N. Khlobystov, Adv. Funct. Mater. 29 (2019) 1808092.
    [8]
    E. Rafiee, S. Rezaei, J. Taiwan Inst. Chem. Eng. 61 (2016) 174-180.
    [9]
    E. Rafiee, N. Nobakht, Korean J. Chem. Eng. 33 (2015) 132-139.
    [10]
    X.Y. Zeng, X.Y. Xiao, J.Y. Chen, H.L. Wang, Appl. Catal. B Environ. 248 (2019) 573-586.
    [11]
    S.H. Xun, W. Jiang, T. Guo, M.Q. He, R.L. Ma, M. Zhang, W.S. Zhu, H.M. Li, J. Colloid Interface Sci. 534 (2019) 239-247.
    [12]
    W. Jiang, K. Zhu, H.P. Li, L.H. Zhu, M.Q. Hua, J. Xiao, C. Wang, Z.Z. Yang, G.Y. Chen, W.S. Zhu, H.M. Li, S. Dai, Chem. Eng. J. 394 (2020) 124831.
    [13]
    W. Jiang, H. Jia, H.P. Li, L.H. Zhu, R.M. Tao, W.S. Zhu, H.M. Li, S. Dai, Green Chem.. 21 (2019) 3074-3080.
    [14]
    S.Y. Dou, R. Wang, Chem. Eng. J. 369 (2019) 64-76.
    [15]
    R. Abazari, S. Sanati, A. Morsali, A. Slawin, C.L. Carpenter-Warren, ACS Appl. Mater. Interfaces 11 (2019) 14759-14773.
    [16]
    X.Y. Yao, C. Wang, H. Liu, H.P. Li, P.W. Wu, L. Fan, H.M. Li, W.S. Zhu, Ind. Eng. Chem. Res. 58 (2018) 863-871.
    [17]
    C. Wang, W. Jiang, H.X. Chen, L.H. Zhu, J. Luo, W.S. Yang, G.Y. Chen, Z.G. Chen, W.S. Zhu, H.M. Li, Chin. J. Catal. 42 (2021) 557-562.
    [18]
    P.W. Wu, W.S. Zhu, Y.H. Chao, J.S. Zhang, P.F. Zhang, H.Y. Zhu, C.F. Li, Z.G. Chen, H.M. Li, S. Dai, Chem. Commun. 52 (2016) 144-147.
    [19]
    Y. Nakagawa, K. Tokuma, Y. Nakaji, A. Miyagawa, M. Tamura, K. Tomishige, Appl. Catal. A Gen. 569 (2019) 149-156.
    [20]
    J. Tang, M.K. Cai, G.Q. Xie, S.X. Bao, S.J. Ding, X.X. Wang, J.Z. Tao, G.Q. Li, Chem. Eur J. 26 (2020) 4333-4340.
    [21]
    M.Y. Chi, Z.G. Zhu, L.L. Sun, T. Su, W.P. Liao, C.L. Deng, Y.C. Zhao, W.Z. Ren, H.Y. Lu, Appl. Catal. B Environ. 259 (2019) 118089.
    [22]
    Y. Lu, Y. Wang, L.D. Gao, J.C. Chen, J.P. Mao, Q.S. Xue, Y. Liu, H.H. Wu, G.H. Gao, M.Y. He, ChemSusChem 1 (2008) 302-306.
    [23]
    C. Wang, Y. Qiu, H.Y. Wu, W.S. Yang, Q. Zhu, Z.G. Chen, S.H. Xun, W.S. Zhu, H.M. Li, Fuel 270 (2020) 117498.
    [24]
    C. Wang, Z.G. Chen, X.Y. Yao, W. Jiang, M. Zhang, H.P. Li, H. Liu, W.S. Zhu, H.M. Li, RSC Adv.. 7 (2017) 39383-39390.
    [25]
    Q. Zhang, J.H. Zhang, H.W. Yang, Y.L. Dong, Y. Liu, L.X. Yang, D.L. Wei, W.X. Wang, L.J. Bai, H. Chen, Catal. Sci. Technol. 9 (2019) 2915-2922.
    [26]
    Y.W. Shi, G.Z. Liu, B.F. Zhang, X.W. Zhang, Green Chem.. 18 (2016) 5273-5279.
    [27]
    J.Q. Tian, K. Zhang, W. Wang, F. Wang, J.M. Dan, S.C. Yang, J.L. Zhang, B. Dai, F. Yu, Green Energy Environ. 4 (2019) 311-321.
    [28]
    S. Phromma, T. Wutikhun, P. Kasamechonchung, T. Eksangsri, C. Sapcharoenkun, Appl. Sci. 10 (2020) 993-1005.
    [29]
    L. Xu, Q.Q. Jiang, Z.H. Xiao, X.Y. Li, J. Huo, S.Y. Wang, L.M. Dai, Angew. Chem. Int. Ed. 55 (2016) 5277-5281.
    [30]
    S.W. Wang, J.M. Wang, H.L. Xin, Green Energy Environ. 2 (2017) 168-171.
    [31]
    F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, Y. Xie, J. Am. Chem. Soc. 136 (2014) 6826-6829.
    [32]
    H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 16 (2017) 454-460.
    [33]
    D. Liu, C.H. Wang, Y. Yu, B.H. Zhao, W.C. Wang, Y.H. Du, B. Zhang, Chem 5 (2019) 376-389.
    [34]
    X.F. Zhang, K.X. Wang, X. Wei, J.S. Chen, Chem. Mater. 23 (2011) 5290-5292.
    [35]
    C. Wang, Y. Yi, H.P. Li, P.W. Wu, M.T. Li, W. Jiang, Z.G. Chen, H.M. Li, W.S. Zhu, S. Dai, Nano Energy 67 (2020) 104253.
    [36]
    B. Christian Enger, R. Loedeng, A. Holmen, Appl. Catal. A Gen. 346 (2008) 1-27.
    [37]
    R. Baddour-Hadjean, V. Golabkan, J.P. Pereira-Ramos, A. Mantoux, D. Lincot, J. Raman Spectrosc. 33 (2002) 631-638.
    [38]
    C. Wang, H.P. Li, X.J. Zhang, Y. Qiu, Q. Zhu, S.H. Xun, W.S. Yang, H.M. Li, Z.G. Chen, W.S. Zhu, Energy Fuels 34 (2020) 2612-2616.
    [39]
    J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Phys. Rev. B 64 (2001) 245407.
    [40]
    J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, G. Garcia Cortadella, B. Nickel, C. Cardenas-Daw, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Nano Lett.. 15 (2015) 6521-6527.
    [41]
    L.X. Yin, Y.Q. Wang, G.S. Pang, Y. Koltypin, A. Gedanken, J. Colloid Interface Sci. 246 (2002) 78-84.
    [42]
    S. Otsuki, T. Nonaka, N. Takashima, W.H. Qian, A. Ishihara, T. Imai, T. Kabe, Energy Fuels 14 (2000) 1232-1239.
    [43]
    H.P. Li, W.S. Zhu, S.W. Zhu, J.X. Xia, Y.H. Chang, W. Jiang, M. Zhang, Y.W. Zhou, H.M. Li, AIChE J.. 62 (2016) 2087-2100.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (219) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return