Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy&Environment, 2022, 7(1): 156-164. doi: 10.1016/j.gee.2020.10.004
Citation: Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy&Environment, 2022, 7(1): 156-164. doi: 10.1016/j.gee.2020.10.004

The storage mechanism difference between amorphous and anatase as supercapacitors

doi: 10.1016/j.gee.2020.10.004
  • Although TiO2 nanotubes is a promising electrode as supercapacitors due to its high energy density, easy synthesis and chemical stability, there are draw backs such as low conductivity and capacitance. Many studies concentrated on improving its electrochemical performance itself but little attention was payed to the reason of capacitance differences caused by its different crystal structures. Herein, we prepare amorphous and anatase TiO2 nanotubes and hydrogenated them by a simple electrochemical hydrogenation method to improve their conductivity and capacitance. And then study and compare their morphology and structure differences by SEM, TEM, XRD and BET. The results show that the pore size distribution, internal structure order and internal carrier concentration are the main reasons for their electrochemical performance differences. The microporous structure less than 2 nm in amorphous nanotubes act as a trap of electrolyte ions at current density larger than 0.1 mA cm-2, leading to small charge and discharge capacitance. The long-range ordered crystal structure of anatase is more favorable for the orderly diffusion of carriers, reducing the inelastic scattering of carrier diffusion process and the electron hole-complexing probability, making anatase nanotubes exhibit higher coulomb efficiency and cycle stability than that of amorphous ones.

     

  • Wanggang Zhang and Yiming Liu are co-first author and they contribute equally to this work.
  • loading
  • [1]
    J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Adv. Mater. 24(2012) 5166-5180.
    [2]
    M. Armand, J.M. Tarascon, Nature 451(2008) 652.
    [3]
    A. Ghicov, P. Schmuki, Chem. Commun. (2009) 2791-2808.
    [4]
    Y. Jun, J.H. Park, M.G. Kang, Chem. Commun. 48(2012) 6456-6471.
    [5]
    P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50(2011) 2904-2939.
    [6]
    Y. Tang, Y. Li, W. Guo, J. Wang, X. Li, S. Chen, S. Mu, Y. Zhao, F. Gao, J. Mater. Chem. A 6(2018) 623-632.
    [7]
    M. Tian, G.S. Wu, A.C. Chen, ACS Catal. 2(2012) 425-432.
    [8]
    Y.F. Yu, J.L. Ren, D.S. Liu, M. Meng, ACS Catal. 4(2014) 934-941.
    [9]
    Y.B. Luan, L.Q. Jing, Y. Xie, X.J. Sun, Y.J. Feng, H.G. Fu, ACS Catal. 3(2013) 1378-1385.
    [10]
    G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Chem. Mater. 19(2007) 4530-4537.
    [11]
    F. Gobal, M. Faraji, J. Electroanal. Chem. 691(2013) 51-56.
    [12]
    C. Zhu, X. Xia, J. Liu, Z. Fan, D. Chao, H. Zhang, H.J. Fan, Nano Energy 4(2014) 105-112.
    [13]
    X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, J.Y. Gan, Y.X. Tong, Y. Li, Nano Lett. 12(2012) 1690-1696.
    [14]
    B. Sarma, A.L. Jurovitzki, Y.R. Smith, S.K. Mohanty, M. Misra, ACS Appl. Mater. Interfaces 5(2013) 1688-1697.
    [15]
    M. Salari, S.H. Aboutalebi, K. Konstantinov, H.K. Liu, Phys. Chem. Chem. Phys. 13(2011) 5038-5041.
    [16]
    F. Fabregatsantiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130(2008) 11312-11316.
    [17]
    Y. Song, X.F. Zhu, C. Xu, D.F. Liu, X.H. Fang, Nanoscale Res. Lett. 8(2013) 391.
    [18]
    J. Idigoras, T. Berger, J.A. Anta, J. Phys. Chem. C 117(2013) 1561-1570.
    [19]
    B.H. Meekins, P.V. Kamat, ACS Nano 3(2009) 3437-3446.
    [20]
    H. Zhou, Y. Zhang, J. Phys. Chem. C 118(2014) 5626-5636.
    [21]
    J. Liu, M. Zheng, X. Shi, H. Zeng, X. Hui, Adv. Funct. Mater. 26(2016) 919-930.
    [22]
    H.-T. Fang, M. Liu, D.-W. Wang, T. Sun, D.-S. Guan, F. Li, J. Zhou, T.-K. Sham, H.-M. Cheng, Nanotechnology 20(2009) 225701.
    [23]
    L. Liu, X. Chen, Chem. Rev. 114(2014) 9890-9918.
    [24]
    H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, Electrochim. Acta 116(2014) 129-136.
    [25]
    J. Conesa, J. Soria, J. Phys. Chem. 86(1982) 1392-1395.
    [26]
    G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11(2011) 3026-3033.
    [27]
    A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63(2008) 515-582.
    [28]
    H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B 101(1997) 7717-7722.
    [29]
    A. Veronica, C. Jérémy, M.A. Lowe, K.J. Woung, T. Pierre-Louis, S.H. Tolbert, H.D. Abruña, S. Patrice, D. Bruce, Nat. Mater. 12(2013) 518.
    [30]
    A.J. Bard, K. Itaya, R.E. Malpas, T. Teherani, J. Phys. Chem. 84(1980) 1262-1266.
    [31]
    V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12(2013) 518.
    [32]
    M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195(2010) 7904-7929.
    [33]
    A. Minguzzi, C.M. Sánchez-Sánchez, A. Gallo, V. Montiel, S. Rondinini, ChemElectroChem 1(2015) 1415-1421.
    [34]
    H. Wu, C. Xu, J. Xu, L. Lu, Z. Fan, X. Chen, Y. Song, D. Li, Nanotechnology 24(2013) 455401.
    [35]
    C.K. Zhang, H.M. Yu, Y.K. Li, Y. Gao, Y. Zhao, W. Song, Z.G. Shao, B.L. Yi, ChemSusChem 6(2013) 659-666.
    [36]
    J.-B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, Electrochim. Acta 51(2006) 1473-1479.
    [37]
    D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.A. Sokol, Nat. Mater. 12(2013) 798.
    [38]
    Y. Mi, Y. Weng, Sci. Rep. 5(2015) 11482.
    [39]
    W. Zhang, Y. Liu, W. Li, W. Liang, F. Yang, Appl. Surf. Sci. 476(2019) 948-958.
    [40]
    X. Lu, G. Wang, T. Zhai, M. Yu, Y. Li, Nano Lett. 12(2012) 1690-1696.
    [41]
    D. Pan, H. Huang, X. Wang, L. Wang, H. Liao, Z. Li, M. Wu, J. Mater. Chem. A 2(2014) 11454-11464.
    [42]
    E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, H. Habazaki, Thin Solid Films 516(2008) 2296-2305.
    [43]
    Z. Su, W. Zhou, F. Jiang, M. Hong, J. Mater. Chem. 22(2011) 535-544.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (287) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return