Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Changyuan Song, Boyi Zhang, Liang Hao, Jiakang Min, Ning Liu, Ran Niu, Jiang Gong, Tao Tang. Converting poly(ethylene terephthalate) waste into N-doped porous carbon as CO2 adsorbent and solar steam generator. Green Energy&Environment, 2022, 7(3): 411-422. doi: 10.1016/j.gee.2020.10.002
Citation: Changyuan Song, Boyi Zhang, Liang Hao, Jiakang Min, Ning Liu, Ran Niu, Jiang Gong, Tao Tang. Converting poly(ethylene terephthalate) waste into N-doped porous carbon as CO2 adsorbent and solar steam generator. Green Energy&Environment, 2022, 7(3): 411-422. doi: 10.1016/j.gee.2020.10.002

Converting poly(ethylene terephthalate) waste into N-doped porous carbon as CO2 adsorbent and solar steam generator

doi: 10.1016/j.gee.2020.10.002
  • Sustainable conversion of waste plastics into valuable carbon materials for diverse applications provides a promising strategy to dispose the municipal and industrial waste plastics. However, it remains a challenge to precisely control the crosslinking reaction for transforming waste polyesters into N-doped porous carbon (NPC) with well-defined microstructures. Herein, we put forwards a strategy of stepwise crosslinking using melamine and ZnCl2/NaCl eutectic salts to convert poly (ethylene terephthalate) (PET) into NPC at 550 °C. We prove that firstly melamine reacts with PET degradation products to form a crosslinking structure, and subsequently ZnCl2/NaCl promote the dehydration and decarboxylation of the crosslinking structure to generate a more thermally stable crosslinking structure. The coordination of two tandem crosslinking reactions is critical to control the microstructure of NPC. Without activations, NPC shows large specific surface area of 1173 m2 g−1, abundant N dopants, and rich oxygen-containing groups. These combined features endure NPC with excellent performance in CO2 capture and solar steam generation, e.g., high CO2 adsorption capacity of 6.47 mmol g−1 and evaporation rate of 1.62 kg m−2 h−1. More importantly, NPC is compared to or prevails over previous carbon-based CO2 adsorbents or photothermal materials. This work will advance the research on “green” reutilization of low-cost polyester wastes to prepare sustainable carbon for solar energy conversion, environmental protection, etc.

     

  • loading
  • [1]
    R. Geyer, J.R. Jambeck, K.L. Law, Sci. Adv. 3 (2017) e1700782.
    [2]
    J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Science 341 (2015) 768-771.
    [3]
    J.M. Garcia, M.L. Robertson, Science 358 (2017) 870-872.
    [4]
    F. Tian, Y. Yang, X.-L. Wang, W.-L. An, X. Zhao, S. Xu, Y.-Z. Wang, Mater. Horiz. 6 (2019) 1733-1739.
    [5]
    K.A. Tarach, K. Pyra, S. Siles, I. Melian-Cabrera, K. Gora-Marek, ChemSusChem 12 (2019) 633-638.
    [6]
    L.S. Diaz-Silvarrey, K. Zhang, A.N. Phan, Green Chem. 20 (2018) 1813-1823.
    [7]
    B.F.S. Nunes, M.C. Oliveira, A.C. Fernandes, Green Chem. 22 (2020) 2419-2425.
    [8]
    B. Alireza, M. Gordon, Chem. Eng. J. 195-196 (2012) 377-391.
    [9]
    V.G. Pol, M.M. Thackeray, Energy Environ. Sci. 4 (2011) 1904-1912.
    [10]
    J. Deng, Y. You, V. Sahajwalla, R.K. Joshi, Carbon 96 (2016) 105-115.
    [11]
    Q. Ma, Y. Yu, M. Sindoro, A.G. Fane, R. Wang, H. Zhang, Adv. Mater. 29 (2017) 1605361.
    [12]
    J.W. Jeon, L. Zhang, J.L. Lutkenhaus, D.D. Laskar, J.P. Lemmon, D. Choi, M.I. Nandasiri, A. Hashmi, J. Xu, R.K. Motkuri, C.A. Fernandez, J. Liu, M.P. Tucker, P.B. Mcgrail, B. Yang, S.K. Nune, ChemSusChem 8 (2015) 428-432.
    [13]
    D. Yao, H. Yang, H. Chen, P.T. Williams, Appl. Catal. B:Environ. 227 (2018) 477-487.
    [14]
    C. Wu, M.A. Nahil, N. Miskolczi, J. Huang, P.T. Williams, Environ. Sci. Technol. 48 (2014) 819-826.
    [15]
    C. Zhuo, B. Hall, H. Richter, Y. Levendis, Carbon 48 (2010) 4024-4034.
    [16]
    A. Panahi, Z. Wei, G. Song, Y.A. Levendis, Ind. Eng. Chem. Res. 58 (2019) 3009-3023.
    [17]
    S. Natarajan, H.C. Bajaj, V. Aravindan, J. Mater. Chem. A 7 (2019) 3244-3252.
    [18]
    S.Y. Sawant, R.S. Somani, A.B. Panda, H.C. Bajaj, ACS Sustain. Chem. Eng. 1 (2013) 1390-1397.
    [19]
    T. Tang, X. Chen, X. Meng, H. Chen, Y. Ding, Angew. Chem. Int. Ed. 44 (2005) 1517-1520.
    [20]
    J. Gong, J. Liu, Z. Jiang, X. Chen, X. Wen, E. Mijowska, T. Tang, Appl. Catal. B Environ. 152-153 (2014) 289-299.
    [21]
    J. Gong, B. Michalkiewicz, X. Chen, E. Mijowska, J. Liu, Z. Jiang, X. Wen, T. Tang, ACS Sustain. Chem. Eng. 2 (2014) 2837-2844.
    [22]
    J. Gong, X. Chen, T. Tang, Prog. Polym. Sci. 94 (2019) 1-32.
    [23]
    B. Kaur, J. Singh, R.K. Gupta, H. Bhunia, J. Environ. Manage. 242 (2019) 68-80.
    [24]
    B. Zhang, C. Song, C. Liu, J. Min, J. Azadmanjiri, Y. Ni, R. Niu, J. Gong, Q. Zhao, T. Tang, J. Mater. Chem. A 7 (2019) 22912-22923.
    [25]
    D. Wu, Z. Li, M. Zhong, T. Kowalewski, K. Matyjaszewski, Angew. Chem. Int. Ed. 53 (2014) 3957-3960.
    [26]
    F. Xu, Z. Tang, S. Huang, L. Chen, Y. Liang, W. Mai, H. Zhong, R. Fu, D. Wu, Nat. Commun. 6 (2015) 7221.
    [27]
    N. Fechler, T.-P. Fellinger, M. Antonietti, Adv. Mater. 25 (2013) 75-79.
    [28]
    X. Zhu, X. Jiang, X. Liu, L. Xiao, Y. Cao, Green Energy Environ. 2 (2017) 310-315.
    [29]
    J. Gong, M. Antonietti, J. Yuan, Angew. Chem. Int. Ed. 56 (2017) 7557-7563.
    [30]
    J.I. Hayashi, A. Kazehaya, K. Muroyama, A.P. Watkinson, Carbon 38 (2000) 1873-1878.
    [31]
    S.V. Levchik, E.D. Weil, Polym. Adv. Technol. 15 (2004) 691-700.
    [32]
    J. Zhang, Q. Ji, P. Zhang, Y. Xia, Q. Kong, Polym. Degrad. Stabil. 95 (2010) 1211-1218.
    [33]
    K. Kawai, H. Kondo, H. Ohtani, Polym. Degrad. Stabil. 93 (2008) 1781-1785.
    [34]
    Z.-L. Yu, G.-C. Li, N. Fechler, N. Yang, Z.-Y. Ma, X. Wang, M. Antonietti, S.-H. Yu, Angew. Chem. Int. Ed. 55 (2016) 14623-14627.
    [35]
    H.K. Knuutila, R. Rennemo, A.F. Ciftja, Green Energy Environ. 4 (2019) 439-452.
    [36]
    L. Shao, M. Liu, J. Huang, Y.-N. Liu, J. Colloid Interf. Sci. 513 (2018) 304-313.
    [37]
    J. Wang, I. Senkovska, M. Oschatz, M.R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, J. Mater. Chem. 1 (2013) 10951-10961.
    [38]
    J. Gong, J. Zhang, H. Lin, J. Yuan, Appl. Mater. Today 12 (2018) 168-176.
    [39]
    L. Shao, Y. Li, J. Huang, Y.-N. Liu, Ind. Eng. Chem. Res. 57 (2018) 2856-2865.
    [40]
    J. Choma, M. Marszewski, L. Osuchowski, J. Jagiello, A. Dziura, M. Jaroniec, ACS Sustain. Chem. Eng. 3 (2015) 733-742.
    [41]
    P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 3 (2018) 1031-1041.
    [42]
    Z. Zhang, P. Mu, J. He, Z. Zhu, H. Sun, H. Wei, W. Liang, A. Li, ChemSusChem 12 (2019) 426-433.
    [43]
    C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang, E. Hitz, C. Jia, A. Gong, F. Jiang, J.Y. Zhu, B. Yang, J. Xie, L. Hu, Adv. Mater. 29 (2017) 1701756.
    [44]
    Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater. 27 (2015) 4302-4307.
    [45]
    X. Wang, Q. Liu, S. Wu, B. Xu, H. Xu, Adv. Mater. 31 (2019) 1807716.
    [46]
    X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Adv. Mater. 29 (2017) 1604031.
    [47]
    G. Li, W.-C. Law, K.C. Chan, Green Chem. 20 (2018) 3689-3695.
    [48]
    N. Liu, L. Hao, B. Zhang, R. Niu, J. Gong, T. Tang, Sustainable Energy Fuels (2020) doi.org/10.1039/D1030SE01239D.
    [49]
    Q. Wang, Y. Qin, F. Jia, S. Song, Y. Li, Green Energy Environ. (2020) doi.org/10.1016/j.gee.2020.1007.1020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (313) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return