Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Yong Wang, Xiaoxia Jia, Libo Li, Jiangfeng Yang, Jinping Li. Selective adsorption of propene over propane on Li-decorated poly (triazine imide). Green Energy&Environment, 2022, 7(2): 307-313. doi: 10.1016/j.gee.2020.10.001
Citation: Yong Wang, Xiaoxia Jia, Libo Li, Jiangfeng Yang, Jinping Li. Selective adsorption of propene over propane on Li-decorated poly (triazine imide). Green Energy&Environment, 2022, 7(2): 307-313. doi: 10.1016/j.gee.2020.10.001

Selective adsorption of propene over propane on Li-decorated poly (triazine imide)

doi: 10.1016/j.gee.2020.10.001
  • Solid adsorbents that simultaneously have high selectivity and uptake capacity are highly promising as alternatives to conventional cryogenic distillation of propene/propane (C3H6/C3H8) separation. Coordinatively unsaturated metal sites (CUS) plays a vital role in selective adsorption of olefins over paraffins. Ultrathin poly (triazine imide) (PTI) nanosheets can reach rapid gas adsorption equilibrium, due to its large surface-to-volume ratio. In this work, combining the advantages of the CUS and the PTI nanosheets, Li CUSs were introduced into the PTI nanosheets for C3H6/C3H8 separation. Density functional theory (DFT) calculations demonstrated the thermodynamic feasibility of incorporating Li CUSs into the PTI nanosheets. These highly exposed Li CUSs were predicted to have a higher adsorption affinity toward C3H6 than C3H8. Using the DFT-derived force field parameters, we further performed grand canonical Monte Carlo (GCMC) simulations to investigate C3H6/C3H8 adsorption on the Li–PTI complexes slit pore model with different pore widths (H). We found that the Li–PTI complexes display considerable C3H6/C3H8 selectivity (4.2–7.9) under relevant conditions. Moreover, the Li–PTI complexes slit pore have large C3H6 working capacities (1.5–4.0 mmol g-1), superior to those calculated for the most of adsorbent materials that have been reported. The Li–PTI complexes with slit pore architecture show potential as C3H6/C3H8 separation materials.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    Y.S. Bae, C.Y. Lee, K.C. Kim, O.K. Farha, P. Nickias, J.T. Hupp, S.T. Nguyen, R.Q. Snurr, Angew. Chem. Int. Ed. 51(2012) 1857-1860.
    [2]
    B. Zheng, G. Maurin, Angew. Chem. Int. Ed. 131(2019) 13872-13876.
    [3]
    X. Wu, Y. Xie, J. Liu, T. He, Y. Zhang, J. Yu, X. Kong, J.-R. Li, J. Mater. Chem. A 7(2019) 25254-25257.
    [4]
    J. Peng, H. Wang, D.H. Olson, Z. Li, J. Li, Chem. Commun. 53(2017) 9332-9335.
    [5]
    Y. Chen, Z. Qiao, D. Lv, C. Duan, X. Sun, H. Wu, R. Shi, Q. Xia, Z. Li, Chem. Eng. J. 328(2017) 360-367.
    [6]
    W.G. Cui, T.L. Hu, X.H. Bu, Adv. Mater. 32(2020) 1806445.
    [7]
    L. Li, R.-B. Lin, X. Wang, W. Zhou, L. Jia, J. Li, B. Chen, Chem. Eng. J. 354(2018) 977-982.
    [8]
    H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, Science 341(2013) 1230444.
    [9]
    P. Liao, N. Huang, W. Zhang, J. Zhang, X. Chen, Science 356(2017) 1193-1196.
    [10]
    Q. Zhai, X. Bu, C. Mao, X. Zhao, L. Daemen, Y. Cheng, A.J. RamirezCuesta, P. Feng, Nat. Commun. 7(2016) 13645.
    [11]
    C.A. Grande, J. Gascon, F. Kapteijn, A.E. Rodrigues, Chem. Eng. J. 160(2010) 207-214.
    [12]
    X. Wang, Y. Wu, X. Zhou, J. Xiao, Q. Xia, H. Wang, Z. Li, Chem. Eng. Sci. 155(2016) 338-347.
    [13]
    L. Lu, S. Wang, E.A. Müller, W. Cao, Y. Zhu, X. Lu, G. Jackson, Fluid Phase Equilib. 362(2014) 227-234.
    [14]
    A.-R. Kim, T.-U. Yoon, E.-J. Kim, J.W. Yoon, S.-Y. Kim, J.W. Yoon, Y.K. Hwang, J.-S. Chang, Y.-S. Bae, Chem. Eng. J. 331(2018) 777-784.
    [15]
    C. Selzer, A. Werner, S. Kaskel, Ind. Eng. Chem. Res. 57(2018) 6609-6617.
    [16]
    S. Aguado, G. Bergeret, C. Daniel, D. Farrusseng, J. Am. Chem. Soc. 134(2012) 14635-14637.
    [17]
    B. Demir, M.G. Ahunbay, Microporous Mesoporous Mater. 198(2014) 185-193.
    [18]
    Y. Wang, N. Huang, X. Zhang, H. He, R. Huang, Z. Ye, Y. Li, D. Zhou, P. Liao, X. Chen, J. Zhang, Angew. Chem. Int. Ed. 131(2019) 7774-7778.
    [19]
    E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown, J.R. Long, Science 335(2012) 1606-1610.
    [20]
    S.J. Geier, J.A. Mason, E.D. Bloch, W.L. Queen, M.R. Hudson, C.M. Brown, J.R. Long, Chem. Sci. 4(2013) 2054-2061.
    [21]
    J.W. Yoon, Y.-K. Seo, Y.K. Hwang, J.-S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P.L. Llewellyn, C. Serre, P. Horcajada, J.-M. Grenéche, A.E. Rodrigues, G. Férey, Angew. Chem. Int. Ed. 122(2010) 6085-6088.
    [22]
    J.E. Bachman, M.T. Kapelewski, D.A. Reed, M.I. Gonzalez, J.R. Long, J. Am. Chem. Soc. 139(2017) 15363-15370.
    [23]
    N.A. Khan, S.H. Jhung, J. Hazard. Mater. 325(2017) 198-213.
    [24]
    K. Huang, L. Liang, S. Chai, U. Tumuluri, M. Li, Z. Wu, B.G. Sumpter, S. Dai, J. Mater. Chem. A 5(2017) 16241-16248.
    [25]
    T. Xin, H.A. Tahini, S.C. Smith, ACS Appl. Mater. Interfaces 9(2017) 19825-19830.
    [26]
    E. Wirnhier, M. Döblinger, D. Gunzelmann, J. Senker, B.V. Lotsch, W. Schnick, Chem. Eur. J. 17(2011) 3213-3221.
    [27]
    M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Chem. Eur. J. 14(2008) 8177-8182.
    [28]
    K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J.r. Senker, B.V. Lotsch, J. Am. Chem. Soc. 136(2014) 1730-1733.
    [29]
    Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.-Z. Qiao, J. Am. Chem. Soc. 139(2017) 3336-3339.
    [30]
    X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 21(2009) 1609-1612.
    [31]
    Y. Wang, X. Chen, Q. Lin, A. Kong, Q.-G. Zhai, S. Xie, P. Feng, Nanoscale 9(2017) 862-868.
    [32]
    K.C. Kim, C.Y. Lee, D. Fairen-Jimenez, S.T. Nguyen, J.T. Hupp, R.Q. Snurr, J. Phys. Chem. C 118(2014) 9086-9092.
    [33]
    Z. Yang, Y. Sun, L.B. Alemany, T.N. Narayanan, W. Billups, J. Am. Chem. Soc. 134(2012) 18689-18694.
    [34]
    K.V. Kumar, K. Preuss, L. Lu, Z.X. Guo, M.M. Titirici, J. Phys. Chem. C 119(2015) 22310-22321.
    [35]
    H. Zhang, C.-J. Tong, Y. Zhang, Y.-N. Zhang, L.-M. Liu, J. Mater. Chem. A 3(2015) 9632-9637.
    [36]
    B. Delley, J. Chem. Phys. 113(2000) 7756-7764.
    [37]
    S. Grimme, J. Comput. Chem. 27(2006) 1787-1799.
    [38]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865.
    [39]
    Q. Sun, Z. Li, D.J. Searles, Y. Chen, G. Lu, A. Du, J. Am. Chem. Soc. 135(2013) 8246-8253.
    [40]
    E. Perim, R. Paupitz, P. Autreto, D. Galvao, J. Phys. Chem. C 118(2014) 23670-23674.
    [41]
    J.J. Gutiérrez-Sevillano, D. Dubbeldam, F. Rey, S. Valencia, M. Palomino, A. Martín-Calvo, S. Calero, J. Phys. Chem. C 114(2010) 14907-14914.
    [42]
    J.J. Potoff, J.I. Siepmann, AIChE J. 47(2001) 1676-1682.
    [43]
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94(1990) 8897-8909.
    [44]
    A.K. Rappé, C.J. Casewit, K. Colwell, W.A. Goddard III, W. Skiff, J. Am. Chem. Soc. 114(1992) 10024-10035.
    [45]
    C. Rizzuto, A. Caravella, A. Brunetti, C.H. Park, Y.M. Lee, E. Drioli, G. Barbieri, E. Tocci, J. Membr. Sci. 528(2017) 135-146.
    [46]
    M. Tong, Q. Yang, Y. Xiao, C. Zhong, Phys. Chem. Chem. Phys. 16(2014) 15189-15198.
    [47]
    X. Zhao, T. Wu, S.-T. Zheng, L. Wang, X. Bu, P. Feng, Chem. Commun. 47(2011) 5536-5538.
    [48]
    Y.-X. Yu, J. Mater. Chem. A 1(2013) 13559-13566.
    [49]
    C.-S. Liu, Z. Zeng, Appl. Phys. Lett. 96(2010) 123101.
    [50]
    S.H. Lee, S.H. Jhi, Carbon 81(2015) 418-425.
    [51]
    X. Zhao, M.S. Shimazu, X. Chen, X. Bu, P. Feng, Angew. Chem. Int. Ed. 57(2018) 6208-6211.
    [52]
    C. Zhang, Y. Lan, X. Guo, Q. Yang, C. Zhong, AIChE J. 64(2018) 1389-1398.
    [53]
    A.L. Dzubak, L.-C. Lin, J. Kim, J.A. Swisher, R. Poloni, S.N. Maximoff, B. Smit, L. Gagliardi, Nat. Chem. 4(2012) 810-816.
    [54]
    M. Fischer, J.R. Gomes, M. Fröba, M. Jorge, Langmuir 28(2012) 8537-8549.
    [55]
    C. Campbell, C.A. Ferreiro-Rangel, M. Fischer, J.R.B. Gomes, M. Jorge, J. Phys. Chem. C 121(2017) 441-458.
    [56]
    Z. Tian, S. Dai, D.-e. Jiang, J. Phys. Chem. Lett. 7(2016) 2568-2572.
    [57]
    R. Poloni, B. Smit, J.B. Neaton, J. Phys. Chem. A 116(2012) 4957-4964.
    [58]
    Y. Wu, H. Chen, D. Liu, Y. Qian, H. Xi, Chem. Eng. Sci. 124(2015) 144-153.
    [59]
    K.S. Walton, A.R. Millward, D. Dubbeldam, H. Frost, J.J. Low, O.M. Yaghi, R.Q. Snurr, J. Am. Chem. Soc. 130(2008) 406-407.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (225) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return