Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Wei Chen, Mian Li, Wen-Li Peng, Ling Huang, Chao Zhao, Dinesh Acharya, Wentao Liu, Anmin Zheng. Covalent organic framework shows high isobutene adsorption selectivity from C4 hydrocarbons: Mechanism of interpenetration isomerism and pedal motion. Green Energy&Environment, 2022, 7(2): 296-306. doi: 10.1016/j.gee.2020.09.016
Citation: Wei Chen, Mian Li, Wen-Li Peng, Ling Huang, Chao Zhao, Dinesh Acharya, Wentao Liu, Anmin Zheng. Covalent organic framework shows high isobutene adsorption selectivity from C4 hydrocarbons: Mechanism of interpenetration isomerism and pedal motion. Green Energy&Environment, 2022, 7(2): 296-306. doi: 10.1016/j.gee.2020.09.016

Covalent organic framework shows high isobutene adsorption selectivity from C4 hydrocarbons: Mechanism of interpenetration isomerism and pedal motion

doi: 10.1016/j.gee.2020.09.016
  • Adsorption and separation of C4 hydrocarbons are crucial steps in petrochemical processes. Employment of porous materials for enhancing the separation efficiency have paid much attention. Covalent-organic frameworks of diamond-topology, dia -COFs, often exhibit unique structural properties such as interpenetration isomerism and pedal motion. Herein, in order to get a deep insight into the structure-performance correlation of such dia -COFs, a series of dia -COF materials have been proposed and theoretically investigated on the C4 separation. It is found that these dia -COFs display an excellent adsorption and separation property towards isobutene with respect to other C4 hydrocarbons (i.e., 1,3-butadiene, 1-butene, 2-cis-butene, 2-trans-butene, isobutane and n-butane). What’s more, the correlation between the topology parameters and experimental synthesis feasibility has been established for COF-300 (), and the unreported COF-300 () is predicted to be experimentally feasible synthesized. Our findings not only provide a deep insight into the mechanism of topology characteristics of dia -COFs on C4 adsorption and separation properties but also guide the design and synthesis of novel highly-effective porous materials.

     

  • loading
  • [1]
    K. Kishida, Y. Okumura, Y. Watanabe, M. Mukoyoshi, S. Bracco, A. Comotti, P. Sozzani, S. Horike, S. Kitagawa, Angew. Chem. Int. Ed. 55(2016) 13784-13788.
    [2]
    Z.M. Ye, C.T. He, Y.T. Xu, R. Krishna, Y. Xie, D.D. Zhou, H.L. Zhou, J.P. Zhang, X.M. Chen, Cryst. Growth Des. 17(2017) 2166-2171.
    [3]
    Z. Zhang, Q. Yang, X. Cui, L. Yang, Z. Bao, Q. Ren, H. Xing, Angew. Chem. Int. Ed. 129(2017) 16500-16505.
    [4]
    P.Q. Liao, N.Y. Huang, W.X. Zhang, J.P. Zhang, X.M. Chen, Science 356(2017) 1193-1196.
    [5]
    H. Kim, Y. Jung, J. Phys. Chem. Lett. 5(2014) 440-446.
    [6]
    J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38(2009) 1477-1504.
    [7]
    H.M. Liu, Y.B. He, J.J. Jiao, D.J. Bai, L. Chen, R. Krishna, B.L. Chen, Chem. Eur. J. 22(2016) 14988-14997.
    [8]
    T. Hahnel, G. Kalies, R. Krishna, J. Mollmer, J. Hofmann, M. Kobalz, H. Krautscheid, Microporous Mesoporous Mater. 224(2016) 392-399.
    [9]
    S. Tanase-Grecea, M. Gehre, Z. Guo, G. Rothenberg, ChemSusChem 10(2017) 3947-3963.
    [10]
    B. Wang, L.H. Xie, X.Q. Wang, X.M. Liu, J.P. Li, J.R. Li, Green Energy Environ. 3(2018) 191-228.
    [11]
    P. Kostetskyy, G. Mpourmpakis, Ind. Eng. Chem. Res. 56(2017) 7062-7069.
    [12]
    L. Liu, L. Wang, D. Liu, Q. Yang, C. Zhong, Green Energy Environ. 5(2020) 333-340.
    [13]
    O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423(2003) 705-714.
    [14]
    P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Carins, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M.J. Zaworotko, Nature 495(2013) 80-84.
    [15]
    G. Barin, G.W. Peterson, V. Crocella, J. Xu, K.A. Colwell, A. Nandy, J.A. Reimer, S. Bordiga, J.R. Long, Chem. Sci. 8(2017) 4399-4409.
    [16]
    S. Bureekaew, H. Sato, R. Matsuda, Y. Kubota, R. Hirose, J. Kim, K. Kato, M. Takata, S. Kitagawa, Angew. Chem. Int. Ed. 49(2010) 7660-7664.
    [17]
    G.G. Chang, B. Li, H.L. Wang, T.L. Hu, Z.B. Bao, B.L. Chen, Chem. Commun. 52(2016) 3494-3496.
    [18]
    J.I. Feldblyum, D. Dutta, A.G. Wong-Foy, A. Dailly, J. Imirzian, D.W. Gidley, A.J. Matzger, Langmuir 29(2013) 8146-8153.
    [19]
    R. Haldar, N. Sikdar, T.K. Maji, Mater. Today 18(2015) 97-116.
    [20]
    S.L. Huang, W.H. Zhang, Y. Ling, S.W. Ng, H.K. Luo, T.S.A. Hor, Chem-Asian. J. 10(2015) 2117-2120.
    [21]
    B. Li, B.L. Chen, in: P. Cheng (Ed.) Lanthanide Metal-Organic Frameworks, Springer, Heidelberg, 2015, pp. 75-107.
    [22]
    B. Li, B.L. Chen, Sci. China Chem. 59(2016) 965-969.
    [23]
    B. Liu, Q. Yang, C. Xue, C. Zhong, B. Chen, B. Smit, J. Phys. Chem. C 112(2008) 9854-9860.
    [24]
    B. Liu, C.Y. Sun, G.J. Chen, Chem. Eng. Sci. 66(2011) 3012-3019.
    [25]
    S.Q. Ma, D.F. Sun, M. Ambrogio, J.A. Fillinger, S. Parkin, H.C. Zhou, J. Am. Chem. Soc. 129(2007) 1858-1859.
    [26]
    T.H. Park, K. Koh, A.G. Wong-Foy, A.J. Matzger, Cryst. Growth Des. 11(2011) 2059-2063.
    [27]
    J.H. Park, W.R. Lee, Y. Kim, H.J. Lee, D.W. Ryu, W.J. Phang, C.S. Hong, Cryst. Growth Des. 14(2014) 699-704.
    [28]
    X.D. Xue, M. Zhang, S.M. Xie, L.M. Yuan, Acta Chromatogr. 27(2015) 15-26.
    [29]
    Q.X. Yao, J. Su, O. Cheung, Q.L. Liu, N. Hedin, X.D. Zou, J. Mater. Chem. A 22(2012) 10345-10351.
    [30]
    T. Ma, J. Li, J. Niu, L. Zhang, A.S. Etman, C. Lin, D. Shi, P. Chen, L.-H. Li, X. Du, J. Sun, W. Wang, J. Am. Chem. Soc. 140(2018) 6763-6766.
    [31]
    F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 131(2009) 4570-4571.
    [32]
    Z.L. Li, H. Li, X. Guan, J. Tang, Y. Yusran, Z. Li, M. Xue, Q. Fang, Y. Yan, V. Valtchev, S. Qiu, J. Am. Chem. Soc. 139(2017) 17771-17774.
    [33]
    X. Zhang, W. Li, Y. Guan, B. Zhou, J. Zhang, Chem. Eur. J. 25(2019) 6569-6574.
    [34]
    H.A. Patel, S.H. Je, J. Park, D.P. Chen, Y. Jung, C.T. Yavuz, A. Coskun, Nat. Commun. 4(2013) 1357.
    [35]
    Y.X. Ma, Z.J. Li, L. Wei, S.Y. Ding, Y.B. Zhang, W. Wang, J. Am. Chem. Soc. 139(2017) 4995-4998.
    [36]
    Y.-B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gándara, A. Duong, X. Zou, O.M. Yaghi, J. Am. Chem. Soc. 135(2013) 16336-16339.
    [37]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78(1997) 1396-1396.
    [38]
    G. Kresse, J. Hafner, Phys. Rev. B 47(1993) 558-561.
    [39]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54(1996) 11169-11186.
    [40]
    D. Dubbeldam, S. Calero, D.E. Ellis, R.Q. Snurr, Mol. Simulat. 42(2016) 81-101.
    [41]
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94(1990) 8897-8909.
    [42]
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102(1998) 2569-2577.
    [43]
    C.D. Wick, M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 104(2000) 8008-8016.
    [44]
    K.A. Maerzke, N.E. Schultz, R.B. Ross, J.I. Siepmann, J. Phys. Chem. B 113(2009) 6415-6425.
    [45]
    L. Zhang, Q. Wang, T. Wu, Y.C. Liu, Chem. Eur. J. 13(2007) 6387-6396.
    [46]
    A. Luna-Triguero, J.M. Vicent-Luna, P. Gomez-Alvarez, S. Calero, J. Phys. Chem. C 121(2017) 3126-3132.
    [47]
    T.F. Willems, C. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Microporous Mesoporous Mater. 149(2012) 134-141.
    [48]
    H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, G.H. Weber, H. Krishnan, Visit: An End-User Tool for Visualizing and Analyzing Very Large Data, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2012.
    [49]
    G.T. Te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22(2001) 931-967.
    [50]
    M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, Acc. Chem. Res. 41(2008) 1782-1789.
    [51]
    J.J. Jiao, H.M. Liu, D.J. Bai, Y.B. He, Inorg. Chem. 55(2016) 3974-3979.
    [52]
    M. Lange, M. Kobalz, J. Bergmann, D. Lässig, J. Lincke, J. Möllmer, A. Möller, J. Hofmann, H. Krautscheid, R. Staudt, R. Gläser, J. Mater. Chem. A 2(2014) 8075-8085.
    [53]
    M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst, A. Wagener, Langmuir 24(2008) 8634-8642.
    [54]
    M.G. Olivier, K. Berlier, J. Bougard, J. Chem. Eng. Data 39(1994) 774-776.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (181) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return