Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Haifeng Yu, Shouliang Wang, Yanjie Hu, Guanjie He, Le Quoc Bao, Ivan P. Parkin, Hao Jiang. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy&Environment, 2022, 7(2): 266-274. doi: 10.1016/j.gee.2020.09.011
Citation: Haifeng Yu, Shouliang Wang, Yanjie Hu, Guanjie He, Le Quoc Bao, Ivan P. Parkin, Hao Jiang. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy&Environment, 2022, 7(2): 266-274. doi: 10.1016/j.gee.2020.09.011

Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability

doi: 10.1016/j.gee.2020.09.011
  • LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials can operate at extremely high voltages and have exceptional energy density. However, their use is limited by inherent structure instability during charge/discharge and exceptionally oxidizing Ni4+ at the surface. Herein, we have developed a citrate-assisted deposition concept to achieve a uniform lithium-conductive LiNbO3 coating layer on the NCM523 surface that avoids self-nucleation of Nb-contained compounds in solution reaction. The electrode–electrolyte interface is therefore stabilized by physically blocking the detrimental parasitic reactions and Ni4+ dissolution whilst still maintaining high Li+ conductivity. Consequently, the modified NCM523 exhibits an encouraging Li-storage specific capacity of 207.4 mAh g-1 at 0.2 C and 128.9 mAh g-1 at 10 C over the range 3.0–4.5 V. Additionally, a 92% capacity retention was obtained after 100 cycles at 1 C, much higher than that of the pristine NCM523 (73%). This surface engineering strategy can be extended to modify other Ni-rich cathode materials with durable electrochemical performances.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    J.M. Tarascon, M. Armand, Nature 414(2011) 359-367.
    [2]
    R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin, I. Hill, J. Dahn, Nat. Energy 4(2019) 683-689.
    [3]
    H. Zhao, B. Qiu, H.C. Guo, K. Jia, Z.P. Liu, Y.G. Xia, Green Energy Environ. 2(2017) 174-185.
    [4]
    W. Li, E. Erickson, A. Manthiram, Nat. Energy 5(2020) 26-34.
    [5]
    J. Kim, H. Lee, H. Cha, M. Yoon, M. Park, J. Cho, Adv. Energy Mater. 8(2018) 1702028.
    [6]
    J.A. Gilbert, J. Bareno, D.P. Abraham, J. Electrochem. Soc. 164(2017) A6054-A6065.
    [7]
    W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 46(2017) 3006-3059.
    [8]
    J. Shi, D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X. Zhang, Y. Yin, X. Yang, Y. Guo, L. Gu, L. Wan, Adv. Mater. 9(2018) 1705575.
    [9]
    S. Jung, H. Gwon, J. Hong, K. Park, D. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater. 4(2014) 1300787.
    [10]
    Y. Ruan, X. Song, Y. Fu, C. Song, V. Battaglia, J. Power Sources 400(2018) 539-548.
    [11]
    H. Kim, M.G. Kim, H.Y. Jeong, H. Nam, J. Cho, Nano Lett. 15(2015) 2111-2119.
    [12]
    S. Li, X. Fu, J. Zhou, Y. Han, P. Qi, G. Xing, F. Xiao, W. Bo, J. Mater. Chem. A 4(2016) 5823-5827.
    [13]
    H. Kim, S. Lee, H. Cho, J. Kim, J. Lee, S. Park, S. Joo, S. Kim, Y. Cho, H. Song, S. Kwak, J. Cho, Adv. Mater. 28(2016) 4705-4712.
    [14]
    H.F. Yu, Y.G. Li, Y.J. Hu, H. Jiang, C.Z. Li, Ind. Eng. Chem. Res. 58(2019) 4108-4115.
    [15]
    H.W. Zhu, H.F. Yu, H. Jiang, Y.J. Hu, H.B. Jiang, C.Z. Li, Chem. Eng. Sci. 217(2020) 115518.
    [16]
    H. Jiang, Y.S. Han, Q. Zhang, J.X. Wang, Y. Fan, C.Z. Li, Rev. Chem. Eng. 35(2019) 917-927.
    [17]
    Y. Su, S. Cui, Z. Zhuo, W. Yang, X. Wang, F. Pan, ACS Appl. Mater. Interfaces 7(2015) 25205-25112.
    [18]
    Y. Cho, Y. Lee, S. Park, Y. Lee, J. Cho, Electrochim. Acta 1(2010) 333-339.
    [19]
    S. Lee, C. Yoon, K. Amine, Y. Sun, J. Power Sources 234(2013) 201-207.
    [20]
    R. Qi, J. Shi, X. Zhang, X. Zeng, Y. Yin, J. Xu, L. Chen, W. Fu, Y. Guo, L. Wan, Sci. China Chem. 60(2017) 1230-1235.
    [21]
    H.G. Song, J.Y. Kim, K.T. Kim, Y.J. Park, J. Power Sources 196(2011) 6847-6855.
    [22]
    N. Ohta, K. Takada, I. Sakaguchi, L.Q. Zhang, R.Z. Ma, K. Fukuda, M. Osada, T. Sasaki, Electrochem. Commun. 9(2007) 1486-1490.
    [23]
    W. Sun, M. Xie, X.X. Shi, L.Q. Zhang, Mater. Res. Bull. 61(2015) 287-291.
    [24]
    Z.J. Zhang, S.L. Chou, Q.F. Gu, H.K. Liu, H.J. Li, K. Ozawa, J.Z. Wang, ACS Appl. Mater. Interfaces 6(2014) 22155-22165.
    [25]
    M. Gellert, K.I. Gries, J. Sann, E. Pfeifer, K. Volz, B. Roling, Solid State Ionics 287(2016) 8-12.
    [26]
    X.L. Li, L.B. Jin, D.W. Song, H.Z. Zhang, X.X. Shi, Z.Y. Wang, L.Q. Zhang, L.Y. Zhu, J. Energy Chem. 40(2020) 39-45.
    [27]
    Y.J. Kim, R. Rajagopal, S. Kang, K.S. Ryu, Chem. Eng. J. 386(2020) 123975.
    [28]
    H. Kim, D. Byun, W. Chang, H.G. Jung, W.C. Choi, J. Mater. Chem. A 5(2017) 25077-25089.
    [29]
    G.Z. Shang, Y.W. Tang, Y.Q. Lai, J. Wu, X. Yang, H.X. Li, C. Peng, J.F. Zheng, Z.A. Zhang, J. Power Sources 423(2019) 246-254.
    [30]
    S. Kang, J. Kim, M. Stoll, D. Abraham, Y. Sun, K. Amine, J. Power Sources 112(2002) 41-48.
    [31]
    R. Zheng, W. Wang, Y. Dai, Q. Ma, Y. Liu, D. Mu, R. Li, J. Ren, C. Dai, Green Energy Environ. 2(2017) 42-50.
    [32]
    Y. Chen, S. Tang, S. Deng, T. Lei, Y. Li, W. Li, G. Cao, J. Zhu, J. Zhang, J. Power Sources 431(2019) 8-16.
    [33]
    X. Zheng, X. Li, Z. Wang, H. Guo, Z. Huang, G. Yan, D. Wang, Electrochim. Acta 191(2016) 832-840.
    [34]
    H. Liu, Y. Yang, J. Zhang, J. Power Sources 162(2006) 644-650.
    [35]
    S. Liu, X. Chen, J. Zhao, J. Su, C. Zhang, T. Huang, J. Wu, A. Yua, J. Power Sources 374(2018) 149-157.
    [36]
    Y. Wu, H. Ming, M. Li, J. Zhang, W. Wahyudi, L. Xie, X. He, J. Wang, Y. Wu, J. Ming, ACS Energy Lett. 4(2019) 656-665.
    [37]
    Q.Q. Jiang, H.F. Yu, Y.J. Hu, H. Jiang, C.Z. Li, Ind. Eng. Chem. Res. 58(2019) 23099-23105.
    [38]
    L. Chen, H. Jiang, Y. Hu, H. Wang, C. Li, Sci. China Mater. 61(2018) 1049-1056.
    [39]
    Y. Li, H. Yu, Y. Hu, H. Jiang, C. Li, J. Energy Chem. 2(2018) 559-564.
    [40]
    Y. Li, S. Wan, G.M. Veith, R.R. Unocic, M.P. Paranthaman, S. Dai, X.G. Sun, Adv. Energy Mater. 7(2017) 1601397.
    [41]
    M. Xu, L. Zhou, Y. Dong, Y. Chen, J. Demeaux, A.D. MacIntosh, A. Garsuch, B.L. Lucht, Energy Environ. Sci. 9(2016) 1308-1319.
    [42]
    Y. Che, X. Lin L. Xing, X. Guan, R. Guo, G. Lan, Q. Zheng, W. Zhang, W. Li, J. Energy Chem. 52(2021) 361-371.
    [43]
    J.Y. Li, W.D. Li, Y. You, A. Manthiram, Adv. Energy Mater. 8(2018) 1801957.
    [44]
    W. Liu, J. Li, W. Li, H.Y. Xu, C. Zhang, X.P. Qiu, Nat. Commun. 11(2020) 3629.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (304) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return