Peng Zhou, Feng Cheng, Gang Nie, Yangyang Yang, Kunsheng Hu, Xiaoguang Duan, Yongli Zhang, Shaobin Wang. Boron carbide boosted Fenton-like oxidation: A novel Fe(III)/Fe(II) circulation. Green Energy&Environment, 2020, 5(4): 414-422. doi: 10.1016/j.gee.2020.09.007
Citation: Peng Zhou, Feng Cheng, Gang Nie, Yangyang Yang, Kunsheng Hu, Xiaoguang Duan, Yongli Zhang, Shaobin Wang. Boron carbide boosted Fenton-like oxidation: A novel Fe(III)/Fe(II) circulation. Green Energy&Environment, 2020, 5(4): 414-422. doi: 10.1016/j.gee.2020.09.007

Boron carbide boosted Fenton-like oxidation: A novel Fe(III)/Fe(II) circulation

doi: 10.1016/j.gee.2020.09.007
  • The sluggish kinetics of Fe(Ⅱ) recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency. In this study, we for the first time use boron carbide (BC) as a green and stable promotor to enhance the reaction of Fe(Ⅲ)/H2O2 for degradation of diverse organic pollutants. Electron paramagnetic resonance analysis and chemical quenching/capturing experiments demonstrate that hydroxyl radicals (OH) are the primary reactive species in the BC/Fe(Ⅲ)/H2O2 system. In situ electrochemical analysis indicates that BC remarkably boosts the Fe(Ⅲ)/Fe(Ⅱ) redox cycles, where the adsorbed Fe(Ⅲ) cations were transformed to more active Fe(Ⅲ) species with a higher oxidative potential to react with H2O2 to produce Fe(Ⅱ). Thus, the recovery of Fe(Ⅱ) from Fe(Ⅲ) is facilitated over BC surface, which enhances OH generation via Fenton reactions. Moreover, BC exhibits outstanding reusability and stability in successive cycles and avoids the secondary pollution caused by conventional organic and metalliferous promotors. Therefore, metal-free BC boosting Fe(Ⅲ)/H2O2 oxidation of organics provides a green and advanced strategy for water decontamination.

     

  • loading
  • [1]
    Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He, Appl. Catal. B: Environ. 255 (2019) 117739.
    [2]
    Y. Zhang, M.H. Zhou, J. Hazard. Mater. 362 (2019) 436-450.
    [3]
    G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513-886.
    [4]
    A.V. Vorontsov, J. Hazard. Mater. 372 (2019) 103-112.
    [5]
    A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng. 2 (2014) 557-572.
    [6]
    J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Env. Sci. Tec. 36 (2006) 1-84.
    [7]
    P. Zhou, X. Huo, J. Zhang, Y. Liu, F. Cheng, X. Cheng, Y. Wang, Y. Zhang, Chem. Eng. J. 387 (2020) 124126.
    [8]
    N. Wang, T. Zheng, G. Zhang, P. Wang, J. Environ. Chem. Eng. 4 (2016) 762-787.
    [9]
    T.X.H. Le, M. Bechelany, S. Lacour, N. Oturan, M.A. Oturan, M. Cretin, Carbon 94 (2015) 1003-1011.
    [10]
    Y.S. Ma, C.F. Sung, J.G. Lin, J. Hazard. Mater. 178 (2010) 320-325.
    [11]
    Z.C. Yang, A.Q. Yu, C. Shan, G.D. Gao, B.C. Pan, Water Res. 137 (2018) 37-46.
    [12]
    P. Zhou, J. Zhang, Z. Xiong, Y. Liu, X. Huo, X. Cheng, W. Li, F. Cheng, Y. Zhang, Appl. Catal. B: Environ. 265 (2020) 118264.
    [13]
    L.W. Chen, J. Ma, X.C. Li, J. Zhang, J.Y. Fang, Y.H. Guan, P.C. Xie, Environ. Sci. Technol. 45 (2011) 3925-3930.
    [14]
    Y.X. Qin, F.H. Song, Z.H. Ai, P.P. Zhang, L.Z. Zhang, Environ. Sci. Technol. 49 (2015) 7948-7956.
    [15]
    M. Xing, W. Xu, C. Dong, Y. Bai, J. Zeng, Y. Zhou, J. Zhang, Y. Yin, Chem 4 (2018) 1359-1372.
    [16]
    C.C. Dong, J.H. Ji, B. Shen, M.Y. Xing, J.L. Zhang, Environ. Sci. Technol. 52 (2018) 11297-11308.
    [17]
    J. Bolobajev, M. Trapido, A. Goi, Chem. Eng. J. 281 (2015) 566-574.
    [18]
    T. Li, Z.W. Zhao, Q. Wang, P.F. Xie, J.H. Ma, Water Res. 105 (2016) 479-486.
    [19]
    X.G. Duan, H.Q. Sun, S.B. Wang, Accounts Chem. Res. 51 (2018) 678-687.
    [20]
    P.W. Wu, Q.D. Jia, J. He, L.J. Lu, L.L. Chen, J. Zhu, C. Peng, M.Q. He, J. Xiong, W.S. Zhu, H.M. Li, J. Hazard. Mater. 391 (2020) 122183.
    [21]
    X.W. Li, B. Wang, Y.H. Huang, J. Di, J.X. Xia, W.S. Zhu, H.M. Li, Green Energy Environ. 4 (2019) 198-206.
    [22]
    P.W. Wu, L.J. Lu, J. He, L.L. Chen, Y.H. Chao, M.Q. He, F.X. Zhu, X.Z. Chu, H.M. Li, W.S. Zhu, Green Energy Environ. 5 (2020) 166-172.
    [23]
    A.K. Suri, C. Subramanian, J.K. Sonber, T.S.R.C. Murthy, Int. Mater. Rev. 55 (2010) 4-40.
    [24]
    S. Sasaki, M. Takeda, K. Yokoyama, T. Miura, T. Suzuki, H. Suematsu, W.H. Jiang, K. Yatsui, Sci. Technol. Adv. Mat. 6 (2005) 181-184.
    [25]
    C. Dominguez, N. Cocuaud, D. Drouan, A. Constant, D. Jacquemain, J. Nucl. Mater. 374 (2008) 473-481.
    [26]
    P. Singh, G. Kaur, K. Singh, M. Kaur, M. Kumar, R. Meena, R. Bala, A. Kumar, Materialia 1 (2018) 258-264.
    [27]
    X.F. Qian, M. Ren, M.Y. Fang, M. Kan, D.T. Yue, Z.F. Bian, H.X. Li, J.P. Jia, Y.X. Zhao, Appl. Catal. B: Environ. 231 (2018) 108-114.
    [28]
    H. Bataineh, O. Pestovsky, A. Bakac, Chem. Sci. 3 (2012) 1594-1599.
    [29]
    Z. Wang, J. Jiang, S.Y. Pang, Y. Zhou, C.T. Guan, Y. Gao, J. Li, Y. Yang, W. Qu, C.C. Jiang, Environ. Sci. Technol. 52 (2018) 11276-11284.
    [30]
    H.Y. Dong, Y. Li, S.C. Wang, W.F. Liu, G.M. Zhou, Y.F. Xie, X.H. Guan, Environ. Sci. Technol. Let. 7 (2020) 219-224.
    [31]
    S.Y. Pang, J. Jiang, J. Ma, Environ. Sci. Technol. 45 (2011) 307-312.
    [32]
    O. Pestovsky, S. Stoian, E.L. Bominaar, X.P. Shan, E. Munck, L. Que, A. Bakac, Angew. Chem. Int. Ed. 44 (2005) 6871-6874.
    [33]
    O. Pestovsky, A. Bakac, Inorg. Chem. 45 (2006) 814-820.
    [34]
    H. Gallard, J. De Laat, Water Res. 34 (2000) 3107-3116.
    [35]
    L. Xu, J. Wang, J. Hazard. Mater. 186 (2011) 256-264.
    [36]
    S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173 (2012) 153-163.
    [37]
    S.J. Hug, O. Leupin, Environ. Sci. Technol. 37 (2003) 2734-2742.
    [38]
    S. Bang, S. Park, Y.M. Lee, S. Hong, K.B. Cho, W. Nam, Angew. Chem. Int. Ed. 53 (2014) 7843-7847.
    [39]
    X. Duan, W. Li, Z. Ao, J. Kang, W. Tian, H. Zhang, S.-H. Ho, H. Sun, S. Wang, J. Mater. Chem. A 7 (2019) 23904-23913.
    [40]
    P.H. Shao, J.Y. Tian, B.R. Liu, W.X. Shi, S.S. Gao, Y.L. Song, M. Ling, F.Y. Cui, Nanoscale 7 (2015) 14254-14263.
    [41]
    S.H. Bossmann, E. Oliveros, S. Gob, S. Siegwart, E.P. Dahlen, L. Payawan, M. Straub, M. Worner, A.M. Braun, J. Phys. Chem. A 102 (1998) 5542-5550.
    [42]
    O. Pestovsky, A. Bakac, J. Am. Chem. Soc. 126 (2004) 13757-13764.
    [43]
    P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, S. Wang, Angew. Chem. Int. Ed. (2020) DOI: 10.1002/anie.202007046.
    [44]
    J. Zou, J. Ma, L.W. Chen, X.C. Li, Y.H. Guan, P.C. Xie, C. Pan, Environ. Sci. Technol. 47 (2013) 11685-11691.
    [45]
    P. Zhou, J. Zhang, Y.L. Zhang, Y. Liu, J. Liang, B. Liu, W. Zhang, RSC Adv. 6 (2016) 38541-38547.
    [46]
    S.Q. Zhou, Y.H. Yu, W.Q. Zhang, X.Y. Meng, J.M. Luo, L. Deng, Z. Shi, J. Crittenden, Environ. Sci. Technol. 52 (2018) 4305-4312.
    [47]
    C.K. Duesteberg, T.D. Waite, Environ. Sci. Technol. 41 (2007) 4103-4110.
    [48]
    L.L. Zhu, J.H. Ji, J. Liu, S.Y. Mine, M. Matsuoka, J.L. Zhang, M.Y. Xing, Angew. Chem. Int. Ed. 59 (2020) 13968-13976.
    [49]
    Y. Chen, G. Zhang, H.J. Liu, J.H. Qu, Angew. Chem. Int. Ed. 58 (2019) 8134-8138.
    [50]
    B. Sheng, F. Yang, Y.H. Wang, Z.H. Wang, Q. Li, Y.G. Guo, X.Y. Lou, J.S. Liu, Chem. Eng. J. 375 (2019) 121989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (172) PDF downloads(96) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return