Huong Lan Huynh, Wakshum Mekonnen Tucho, Zhixin Yu. Structured NiFe catalysts derived from in-situ grown layered double hydroxides on ceramic monolith for CO2 methanation. Green Energy&Environment, 2020, 5(4): 423-432. doi: 10.1016/j.gee.2020.09.004
Citation: Huong Lan Huynh, Wakshum Mekonnen Tucho, Zhixin Yu. Structured NiFe catalysts derived from in-situ grown layered double hydroxides on ceramic monolith for CO2 methanation. Green Energy&Environment, 2020, 5(4): 423-432. doi: 10.1016/j.gee.2020.09.004

Structured NiFe catalysts derived from in-situ grown layered double hydroxides on ceramic monolith for CO2 methanation

doi: 10.1016/j.gee.2020.09.004
  • Monolithic catalysts for CO2 methanation have become an active research area for the industrial development of Power-to-Gas technology. In this study, we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO2 methanation. The NiFe catalysts were derived from in-situ grown layered double hydroxides (LDHs) via urea hydrolysis. The influence of different washcoat materials, i.e., alumina and silica colloidal suspensions on the formation of LDHs layer was investigated, together with the impact of total metal concentration. NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina, while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions. On the other hand, the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration. The best monolithic catalyst (COR-AluCC-0.5M) was robust, having a thin and well-adhered catalytic layer on the cordierite substrate. As a result, high methane yield was obtained from CO2 methanation at high flow rate on this structured NiFe catalysts. The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.

     

  • loading
  • [1]
    D. Reichle; J. Houghton; B. Kane; J. Ekmann Carbon sequestration research and development; Oak Ridge National Lab., TN (US); National Energy Technology Lab …: 1999.
    [2]
    S. Ronsch; J. Schneider; S. Matthischke; M. Schluter; M. Gotz; J. Lefebvre; P. Prabhakaran; S. Bajohr, Fuel 166 (2016) 276-296.
    [3]
    P. Sabatier; J.-B. Senderens, Comptes Rendus Des Seances De L‘Academie Des Sciences, Section VI - Chimie 134 (1902) 514-516.
    [4]
    C. Vogt; M. Monai; G.J. Kramer; B.M. Weckhuysen, Nature Catalysis 2 (2019) 188-197.
    [5]
    M.a.A. Aziz; A.A. Jalil; S. Triwahyono; A. Ahmad, Green Chemistry 17 (2015) 2647-2663.
    [6]
    M. Bailera; P. Lisbona; L.M. Romeo; S. Espatolero, Renewable and Sustainable Energy Reviews 69 (2017) 292-312.
    [7]
    K. Ghaib; F.-Z. Ben-Fares, Renewable and Sustainable Energy Reviews 81 (2018) 433-446.
    [8]
    P. Frontera; A. Macario; M. Ferraro; P. Antonucci, Catalysts 7 (2017) 59.
    [9]
    C. Lv; L. Xu; M. Chen; Y. Cui; X. Wen; Y. Li; C.-E. Wu; B. Yang; Z. Miao; X. Hu; Q. Shou, Frontiers in Chemistry 8 (2020).
    [10]
    M.P. Andersson; T. Bligaard; A. Kustov; K.E. Larsen; J. Greeley; T. Johannessen; C.H. Christensen; J.K. Noerskov, Journal of Catalysis 239 (2006) 501-506.
    [11]
    A.L. Kustov; A.M. Frey; K.E. Larsen; T. Johannessen; J.K. Noerskov; C.H. Christensen, Applied Catalysis A: General 320 (2007) 98-104.
    [12]
    D. Pandey; K. Ray; R. Bhardwaj; S. Bojja; K.V.R. Chary; G. Deo, International Journal of Hydrogen Energy 43 (2018) 4987-5000.
    [13]
    H.L. Huynh; Z. Yu, Energy Technology 8 (2020) 1901475.
    [14]
    M. Lehner; R. Tichler; H. Steinmuller; M. Koppe, Lehner, M.; Tichler, R.; Steinmuller, H.; Koppe, M., Eds. Springer International Publishing: Cham, 2014; pp 41-61.
    [15]
    E. Tronconi; G. Groppi; C.G. Visconti, Current Opinion in Chemical Engineering 5 (2014) 55-67.
    [16]
    T.A. Nijhuis; A.E.W. Beers; T. Vergunst; I. Hoek; F. Kapteijn; J.A. Moulijn, Catalysis Reviews 43 (2001) 345-380.
    [17]
    H. Chen; L. Hu; M. Chen; Y. Yan; L. Wu, Advanced Functional Materials 24 (2014) 934-942.
    [18]
    W. Li; G. Fan; L. Yang; F. Li, ChemCatChem 8 (2016) 2724-2733.
    [19]
    H. Li; D. Zhang; P. Maitarad; L. Shi; R. Gao; J. Zhang; W. Cao, Chemical Communications 48 (2012) 10645-10647.
    [20]
    R. Chai; S. Fan; Z. Zhang; P. Chen; G. Zhao; Y. Liu; Y. Lu, ACS Sustainable Chemistry & Engineering 5 (2017) 4517-4522.
    [21]
    H. Chen; F. Zhang; S. Fu; X. Duan, Advanced Materials 18 (2006) 3089-3093.
    [22]
    X. Guo; S. Xu; L. Zhao; W. Lu; F. Zhang; D.G. Evans; X. Duan, Langmuir 25 (2009) 9894-9897.
    [23]
    Z. Lu; F. Zhang; X. Lei; L. Yang; S. Xu; X. Duan, Chemical Engineering Science 63 (2008) 4055-4062.
    [24]
    T. Xue; R. Li; Y. Gao; Q. Wang, Chemical Engineering Journal 384 (2020) 123284.
    [25]
    M. Adachi-Pagano; C. Forano; J.-P. Besse, Journal of Materials Chemistry 13 (2003) 1988-1993.
    [26]
    M. Ogawa; H. Kaiho, Langmuir 18 (2002) 4240-4242.
    [27]
    A. Vita; C. Italiano; L. Pino; P. Frontera; M. Ferraro; V. Antonucci, Applied Catalysis B: Environmental 226 (2018) 384-395.
    [28]
    C. Janke; M.S. Duyar; M. Hoskins; R. Farrauto, Applied Catalysis B: Environmental 152-153 (2014) 184-191.
    [29]
    C. Fukuhara; K. Hayakawa; Y. Suzuki; W. Kawasaki; R. Watanabe, Applied Catalysis A: General 532 (2017) 12-18.
    [30]
    S. Ratchahat; M. Sudoh; Y. Suzuki; W. Kawasaki; R. Watanabe; C. Fukuhara, Journal of CO2 Utilization 24 (2018) 210-219.
    [31]
    J.Y. Ahn; S.W. Chang; S.M. Lee; S.S. Kim; W.J. Chung; J.C. Lee; Y.J. Cho; K.S. Shin; D.H. Moon; D.D. Nguyen, Fuel 250 (2019) 277-284.
    [32]
    V. Meille, Applied Catalysis A: General 315 (2006) 1-17.
    [33]
    P. Avila; M. Montes; E.E. Miro, Chemical Engineering Journal 109 (2005) 11-36.
    [34]
    U. Holzwarth; N. Gibson, Nature Nanotechnology 6 (2011) 534-534.
    [35]
    A. Gervasini, Auroux A., Ed. UK, 2013.
    [36]
    S. Brunauer; P.H. Emmett; E. Teller, Journal of the American Chemical Society 60 (1938) 309-319.
    [37]
    E.P. Barrett; L.G. Joyner; P.P. Halenda, Journal of the American Chemical Society 73 (1951) 373-380.
    [38]
    X. Wu; Y. Du; X. An; X. Xie, Catalysis Communications 50 (2014) 44-48.
    [39]
    F. Cavani; F. Trifiro; A. Vaccari, Catalysis Today 11 (1991) 173-301.
    [40]
    H. Wang; G. Fan; C. Zheng; X. Xiang; F. Li, Industrial & Engineering Chemistry Research 49 (2010) 2759-2767.
    [41]
    H. Wang; J. Gao; Z. Li; Y. Ge; K. Kan; K. Shi, CrystEngComm 14 (2012) 6843-6852.
    [42]
    D. Beierlein; D. Haussermann; M. Pfeifer; T. Schwarz; K. Stowe; Y. Traa; E. Klemm, Applied Catalysis B: Environmental 247 (2019) 200-219.
    [43]
    D. Shi; R. Wojcieszak; S. Paul; E. Marceau, Catalysts 9 (2019) 451.
    [44]
    R. Brown; M.E. Cooper; D.A. Whan, Applied Catalysis 3 (1982) 177-186.
    [45]
    T. Li; H. Wang; Y. Yang; H. Xiang; Y. Li, Fuel Processing Technology 118 (2014) 117-124.
    [46]
    D. Wu; Y. Zhang; Y. Li, Journal of Industrial and Engineering Chemistry 56 (2017) 175-184.
    [47]
    Y. Han; H. Li; X. Ma; Z.-H. Liu, Solid State Sciences 11 (2009) 2149-2155.
    [48]
    J. Liu; Y. Li; X. Huang; G. Li; Z. Li, Advanced Functional Materials 18 (2008) 1448-1458.
    [49]
    J.A. Gursky; S.D. Blough; C. Luna; C. Gomez; A.N. Luevano; E.A. Gardner, Journal of the American Chemical Society 128 (2006) 8376-8377.
    [50]
    C. Agrafiotis; A. Tsetsekou; I. Leon, Journal of the American Ceramic Society 83 (2000) 1033-1038.
    [51]
    D. Pandey; G. Deo, Chemical Engineering Communications 203 (2016) 372-380.
    [52]
    I. Wysocka; J. Hupka; A. Rogala, Catalysts 9 (2019).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads(94) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return