Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Huanran Li, Xiaobo Han, Suyu Jiang, Lili Zhang, Wei Ma, Renzhi Ma, Zhen Zhou. Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution. Green Energy&Environment, 2022, 7(2): 314-323. doi: 10.1016/j.gee.2020.09.003
Citation: Huanran Li, Xiaobo Han, Suyu Jiang, Lili Zhang, Wei Ma, Renzhi Ma, Zhen Zhou. Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution. Green Energy&Environment, 2022, 7(2): 314-323. doi: 10.1016/j.gee.2020.09.003

Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution

doi: 10.1016/j.gee.2020.09.003
  • The layered materials have demonstrated great prospects as cost-effective substitutes for precious electrocatalysts in hydrogen evolution reaction. Research efforts have been devoted to synthesizing highly conductive MoS2 with the substantial cardinal plane and edge active sites. Here, we successfully synthesized a hierarchical 1T/2H–MoS2 with sodium ion insertion via a facile hydrothermal method. The contents of the 1T-phase can be flexibly controlled by different hydrothermal temperatures (160 ~ 200 ℃). And the modified uniformly dispersed 1T/2H–MoS2 nanospheres with different d spacings were designed to enhance the electrocatalytic efficiency by adding SiO2 and through the ion exchange process of NaOH and HF solution. The as-synthesized Na+ intercalated 1T-MoS2 nanosphere with an expanded interlayer of 0.95 nm obtained at 160 ℃ exhibits a prominent electrocatalytic performance of hydrogen evolution reaction with a comparable overpotential of 255 mV and a remarkably small Tafel slope of 44 mV/decade. Therefore, this study provides a facile and controllable strategy to yield interlayer-expanded 1T-MoS2 nanospheres, making it a potentially competitive hydrogen evolution catalyst for the hydrogen cell.

     

  • These authors contributed equally to this paper.
  • loading
  • [1]
    J.A. Turner, Science 305(2004) 972-974.
    [2]
    W. Ma, R.Z. Ma, C.X. Wang, J.B. Liang, X.H. Liu, K.C. Zhou, T. Sasaki, ACS Nano 9(2015) 1977-1984.
    [3]
    W. Ma, M.X. Miao, G.H. Han, J.Q. Wu, X.M. Yu, J.Y. Zheng, S.Y. Jiang, Y.F. Han, R.Z. Ma, ACS Sustain. Chem. Eng. 7(2019) 15127-15136.
    [4]
    T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317(2007) 100-102.
    [5]
    X. Zhang, Z.C. Lai, C.L. Tan, H. Zhang, Angew. Chem. Int. Ed. 55(2016) 8816-8838.
    [6]
    K. Qi, S.S. Yu, Q.Y. Wang, W. Zhang, J.C. Fan, W.T. Zheng, X.Q. Cui, J. Mater. Chem. A 4(2016) 4025-4031.
    [7]
    Y. Yin, J.C. Han, Y.M. Zhang, X.H. Zhang, P. Xu, Q. Yuan, L. Samad, X.J. Wang, Y. Wang, Z.H. Zhang, P. Zhang, X.Z. Cao, B. Song, S. Jin, J. Am. Chem. Soc. 138(2016) 7965-7972.
    [8]
    H.J. Cui, Y.B. Guo, W. Ma, Z. Zhou, ChemSusChem 13(2020) 1155-1171.
    [9]
    M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5(2013) 263-275.
    [10]
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6(2011) 147-150.
    [11]
    A.J. Hu, C.Z. Shu, X.M. Qiu, M.L. Li, R.X. Zheng, J.P. Long, ACS Sustain. Chem. Eng. 7(2019) 6929-6938.
    [12]
    A.J. Hu, J.P. Long, C.Z. Shu, R.X. Liang, J.B. Li, ACS Appl. Mater. Interfaces 10(2018) 34077-34086.
    [13]
    J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora,G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331(2011) 568-571.
    [14]
    Q.H. Wang, K. Kalantar Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(2012) 699-712.
    [15]
    Y. Yan, B.Y. Xia, Z.C. Xu, X. Wang, ACS Catal. 4(2014) 1693-1705.
    [16]
    A.A. Yaron, M. Levy, R. Tenne, R.P. Biro, M. Weidenbach, M.B. Sadan, L. Houben, A.N. Enyashin, G. Seifert, D. Feuermann, E.A. Katz, J.M. Gordon, Angew. Chem. Int. Ed. 50(2011) 1810-1814.
    [17]
    Z.P. Liu, Z.C. Gao, Y.H. Liu, M.S. Xia, R.W. Wang, N. Li, ACS Appl. Mater. Interfaces 9(2017) 25291-25297.
    [18]
    J. Yang, K. Wang, J.X. Zhu, C. Zhang, T.X. Liu, ACS Appl. Mater. Interfaces 8(2016) 31702-31708.
    [19]
    Z.P. Liu, L. Zhao, Y.H. Liu, Z.C. Gao, S.S. Yuan, X.T. Li, N. Li, S.D. Miao, Appl. Catal., B 246(2019) 296-302.
    [20]
    Q. Tang, D.E. Jiang, ACS Catal. 6(2016) 4953-4961.
    [21]
    D. Voiry, M. Salehi, R. Silva, T. Fujita, M.W. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 13(2013) 6222-6227.
    [22]
    Z. Li, P.C. Sun, X. Zhan, Q.Y. Zheng, T.T. Feng, P.V. Braun, S.H. Qi, J. Alloys Compd. 796(2019) 25-32.
    [23]
    A. Ambrosi, Z. Sofer, M. Pumera, Chem. Commun. 51(2015) 8450-8453.
    [24]
    M. Lukowski, A. Daniel, F. Meng, A. Forticaux, L.S. Li, S. Jin, J. Am. Chem. Soc. 135(2013) 10274-10277.
    [25]
    Y. Li, L.L. Wang, S.Q. Zhang, X.R. Dong, Y.Z. Song, T. Cai, Y.T. Liu, Catal. Sci. Technol. 7(2017) 718-724.
    [26]
    J. Kibsgaard, Z.B. Chen, B.N. Reinecke, T.F. Jaramillo, Nat. Mater. 11(2012) 963-969.
    [27]
    J. Xu, Y.Y. Huang, X.L. Cheng, T. Liu, Y.C. Lu, X. Chen, Y. You, J.J. Zhang, Inorg. Chem. Front. 5(2018) 3140-3147.
    [28]
    J.F. Xie, J.J. Zhang, S. Li, F. Grote, X.D. Zhang, H. Zhang, R.X. Wang, Y. Lei, B.C. Pan, Y. Xie, J. Am. Chem. Soc. 135(2013) 17881-17888.
    [29]
    J.F. Xie, H. Zhang, S. Li, R.X. Wang, X. Sun, M. Zhou, J.F. Zhou, X.W. Lou, Y. Xie, Adv. Mater. 25(2013) 5807-5813.
    [30]
    S.A. Shah, G.X. Zhu, X.P. Shen, L.R. Kong, Z.Y. Ji, K.Q. Xu, H.B. Zhou, J. Zhu, P. Song, C.S. Song, A.H. Yuan, X.L. Miao, Adv. Mater. Interfaces 5(2018) 1801093.
    [31]
    J.X. Guo, K. Zhang, Y.F. Sun, Y.X. Zong, Z.Y. Guo, Q.Y. Liu, X. Zhang, Y.Y. Xia, Inorg. Chem. Front. 5(2018) 2092-2099.
    [32]
    W. Ma, H.R. Li, S.Y. Jiang, G.H. Han, J. Gao, X.M. Yu, H.L. Lian, W.F. Tu, Y.F. Han, R.Z. Ma, ACS Sustain. Chem. Eng. 6(2018) 14441-14449.
    [33]
    L.X. Zheng, S.C. Han, H. Liu, P.P. Yu, X.S. Fang, Small 12(2016) 1527-1536.
    [34]
    X.Q. Zan, Z. Pan, Z.Z. Wu, Z.P. Wang, Z.H. Liu, J. Power Sources 264(2014) 229-234.
    [35]
    M.R. Gao, M.K.Y. Chan, Y.G. Sun, Nat. Commun. 6(2015) 7081.
    [36]
    L. Nurdiwijayanto, R.Z. Ma, N. Sakai, T. Sasaki, Dalton Trans. 47(2018) 3014-3021.
    [37]
    L. Cai, J.F. He, Q.H. Liu, T. Yao, L. Chen, W.S. Yan, F.C. Hu, Y. Jiang, Y.D. Zhao, T.D. Hu, Z.H. Sun, S.Q. Wei, J. Am. Chem. Soc. 137(2015) 2622-2627.
    [38]
    S.S. Chou, Y.K. Huang, J. Kim, B. Kaehr, B.M. Foley, P. Lu, C. Dykstra, P.E. Hopkins, C.J. Brinker, J.X. Huang, V.P. Dravid, J. Am. Chem. Soc. 137(2015) 1742-1745.
    [39]
    P.F. Cheng, K. Sun, Y.H. Hu, Nano Lett. 16(2016) 572-576.
    [40]
    C.Y. Zhao, J.M. Ang, Z.L. Liu, X.H. Lu, Chem. Eng. J. 330(2017) 462-469.
    [41]
    D.Z. Wang, B.Y. Su, Y. Jiang, L. Li, B.K. Ng, Z.Z. Wu, F.Y. Liu, Chem. Eng. J. 330(2017) 102-108.
    [42]
    X.Q. Zan, X.Y. Zhang, S.Y. Bao, Z.T. Zhang, F. Hao, Z.Z. Wu, J. Mater. Chem. A 5(2016) 1-9.
    [43]
    X.B. Fan, P.T. Xu, D.K. Zhou, Y.F. Sun, Y.C. Li, M.A.T. Nguyen, M. Terrones, T.E. Mallouk, Nano Lett. 15(2015) 5956-5960.
    [44]
    Q. Liu, Q. Fang, W.S. Chu, Y.Y. Wan, X.L. Li, W.Y. Xu, M. Habib, S. Tao, Y. Zhou, D.B. Liu, T. Xiang, A. Khalil, X.J. Wu, M. Chhowalla, P.M. Ajayan, L. Song, Chem. Mater. 29(2017) 4738-4744.
    [45]
    G.B. Zhang, T.F. Xiong, M.Y. Yan, L. He, X.B. Liao, C.Q. He, C.S. Yin, H.N. Zhang, L.Q. Mai, Nanomater. Energy 49(2018) 555-563.
    [46]
    X.M. Geng, W.W. Sun, W. Wu, B. Chen, A. Al Hilo, M. Benamara, H.L. Zhu, F. Watanabe, J.B. Cui, T.P. Chen, Nat. Commun. 7(2016) 10672.
    [47]
    Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, J. Am. Chem. Soc. 133(2011) 7296-7299.
    [48]
    Y.M. Liu, H.T. Yu, X. Quan, S. Chen, H.M. Zhao, Y.B. Zhang, Sci. Rep. 4(2014) 1-6.
    [49]
    A.B. Laursen, S. Kegnaes, S. Dahl, I. Chorkendorff, Energy Environ. Sci. 5(2012) 5577-5591.
    [50]
    A.K. Kunhiraman, S. Ramanathan, B. Pullithadathil, Electrochim. Acta 264(2018) 329-340.
    [51]
    C. Hitz, A. Lasia, J. Electroanal. Chem. 500(2001) 213-222.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return