Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Zhuojun Yang, Yongxiao Tuo, Qing Lu, Chen Chen, Mengshan Liu, Bingyan Liu, Xuezhi Duan, Yan Zhou, Jun Zhang. Hierarchical Cu3P-based nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting. Green Energy&Environment, 2022, 7(2): 236-245. doi: 10.1016/j.gee.2020.09.002
Citation: Zhuojun Yang, Yongxiao Tuo, Qing Lu, Chen Chen, Mengshan Liu, Bingyan Liu, Xuezhi Duan, Yan Zhou, Jun Zhang. Hierarchical Cu3P-based nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting. Green Energy&Environment, 2022, 7(2): 236-245. doi: 10.1016/j.gee.2020.09.002

Hierarchical Cu3P-based nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting

doi: 10.1016/j.gee.2020.09.002
  • Exploring the efficient bifunctional catalysts and binder-free electrode materials for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is receiving continuous interest. Herein, we report the fabrication of hierarchical copper phosphide nanoarrays (Cu3P) on three-dimensional (3D) nickel foam (NF) through a template-directed synthetic strategy as electrocatalysts for overall water splitting. Specifically, the Cu3P/NF electrode demonstrates a remarkably low overpotential of ~331 mV to approach the current density of 50 mA cm-2 in the OER, and an overpotential of ~115 mV to achieve -10 mA cm-2 current density in the HER. Meanwhile the Cu3P/NF catalyst could hold a great stability for both reactions in alkaline condition, reflected in 37 h for OER and 24 h for HER of consistent galvanostatic electrolysis. As revealed by TEM, STEM and XPS characterizations, the high catalytic OER activity can be ascribed to the 3D open structure of Cu3P/NF and the abundant CuO active sites in hierarchical CuO/Cu3P/NF structure after in-situ activation. Furthermore, the overall water splitting is conducted in a two-electrode cell, which requires only a cell voltage of 1.63 V to approach 10 mA cm-2 with a good stability of 20 h. This protocol of Cu3P/NF electrode affords a general strategy to construct hierarchically structured metal phosphides for clean energy-related application.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1(2017) 1-13.
    [2]
    J. Zhu, J. Zou, H. Cheng, Y. Gu, Z. Lu, Green Energy Environ. 4(2019) 345-359.
    [3]
    B. You, Y. Sun, Acc. Chem. Res. 51(2018) 1571-1580.
    [4]
    J.D. Blakemore, R.H. Crabtree, G.W. Brudvig, Chem. Rev. 115(2015) 12974-13005.
    [5]
    J. Li, D. Chu, D.R. Baker, H. Dong, R. Jiang, D.T. Tran, Chem. Mater. 31(2019) 7590-7600.
    [6]
    C. Chen, Z. Yang, W. Liang, H. Yan, Y. Tuo, Y. Li, Y. Zhou, J. Zhang, J. Energy Chem. 55(2021) 345-354.
    [7]
    E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P.C.K. Vesborg, J. Halme, O. Hansen, Energy Environ. Sci. 8(2015) 2991-2999.
    [8]
    Z. Zhang, G. Liu, X. Cui, B. Chen, Y. Zhu, Y. Gong, F. Saleem, S. Xi, Y. Du, A. Borgna, Adv. Mater. 30(2018) 1801741.
    [9]
    C. Li, Y. Xu, Y. Li, H. Yu, S. Yin, H. Xue, X. Li, H. Wang, L. Wang, Green Energy Environ. 3(2018) 352-359.
    [10]
    B.S. Yeo, Nat. Catal. 2(2019) 284-285.
    [11]
    M. Zhang, J. Chen, H. Li, P. Cai, Y. Li, Z. Wen, Nano Energy 61(2019) 576-583.
    [12]
    E.A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T.W. Hansen, S. Horch, I.E. Stephens, I. Chorkendorff, Chem. Sci. 6(2015) 190-196.
    [13]
    G. Li, S. Li, J. Ge, C. Liu, W. Xing, J. Mater. Chem. A 5(2017) 17221-17229.
    [14]
    L. Fu, F. Yang, G. Cheng, W. Luo, Nanoscale 10(2018) 1892-1897.
    [15]
    Y. Pi, N. Zhang, S. Guo, J. Guo, X. Huang, Nano Lett. 16(2016) 4424-4430.
    [16]
    S.S. Lu, L.M. Zhang, Y.W. Dong, J.Q. Zhang, X.T. Yan, D.F. Sun, X. Shang, J.Q. Chi, Y.M. Chai, B. Dong, J. Mater. Chem. A 7(2019) 16859-16866.
    [17]
    Y. Tuo, X. Wang, C. Chen, X. Feng, Z. Liu, Y. Zhou, J. Zhang, Electrochim. Acta 335(2020) 135682.
    [18]
    F. Zhang, R. Ji, Y. Liu, Z. Li, Z. Liu, S. Lu, Y. Wang, X. Wu, H. Jin, B. Cai, Chem. Eng. J. (2020) 126037.
    [19]
    H. Du, R.M. Kong, X. Guo, F. Qu, J. Li, Nanoscale 10(2018) 21617-21624.
    [20]
    T.N. Huan, G. Rousse, S. Zanna, I.T. Lucas, X. Xu, N. Menguy, V. Mougel, M. Fontecave, Angew. Chem. Int. Ed. 56(2017) 4792-4796.
    [21]
    Y. Lin, Y. Pan, J. Zhang, Electrochim. Acta 232(2017) 561-569.
    [22]
    A. Han, H. Chen, Z. Sun, J. Xu, P. Du, Chem. Commun. 51(2015) 11626-11629.
    [23]
    L.A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 8(2015) 2347-2351.
    [24]
    Z. Li, C. Yu, Y. Wen, Y. Gao, X. Xing, Z. Wei, H. Sun, Y.W. Zhang, W. Song, ACS Catal. 9(2019) 5084-5095.
    [25]
    L. Ai, T. Tian, J. Jiang, ACS Sustain. Chem. Eng. 5(2017) 4771-4777.
    [26]
    L. Yan, P. Dai, Y. Wang, X. Gu, L. Li, L. Cao, X. Zhao, ACS Appl. Mater. Interfaces 9(2017) 11642-11650.
    [27]
    H. Kim, S. Oh, E. Cho, H. Kwon, ACS Sustain. Chem. Eng. 6(2018) 6305-6311.
    [28]
    B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen, Y. Tang, Chem. Mater. 28(2016) 6934-6941.
    [29]
    X. Wang, L. Chai, J. Ding, L. Zhong, Y. Du, T.T. Li, Y. Hu, J. Qian, S. Huang, Nano Energy 62(2019) 745-753.
    [30]
    L. Chai, Z. Hu, X. Wang, Y. Xu, L. Zhang, T.T. Li, Y. Hu, J. Qian, S. Huang, Adv. Sci. 7(2020) 1903195.
    [31]
    T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, Adv. Energy Mater. 7(2017) 1700020.
    [32]
    X. Huang, X. Xu, C. Li, D. Wu, D. Cheng, D. Cao, Adv. Energy Mater. 9(2019) 1803970.
    [33]
    Y. Jiang, Y. Lu, J. Lin, X. Wang, Z. Shen, Small 2(2018) 1700369.
    [34]
    V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.G. Lee, T. Yoon, K.S. Kim, ACS Catal. 7(2017) 7196-7225.
    [35]
    P.E. Piszel, A. Vasilopoulos, S.S. Stahl, Angew. Chem. Int. Ed. 131(2019) 12339-12343.
    [36]
    W. Wang, X. Zhao, Y. Cao, Z. Yan, R. Zhu, Y. Tao, X. Chen, D. Zhang, G. Li, D.L. Phillips, ACS Appl. Mater. Interfaces 11(2019) 16527-16537.
    [37]
    X. Yue, S. Yi, R. Wang, Z. Zhang, S. Qiu, Nanoscale 8(2016) 17516-17523.
    [38]
    M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116(2016) 3722-3811.
    [39]
    S. Kundu, W. Xia, W. Busser, M. Becker, D.A. Schmidt, M. Havenith, M. Muhler, Phys. Chem. Chem. Phys. 12(2010) 4351-4359.
    [40]
    Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, J. Am. Chem. Soc. 135(2013) 1201-1204.
    [41]
    W.E. Kaden, T. Wu, W.A. Kunkel, S.L. Anderson, Science 326(2009) 826-829.
    [42]
    J. Tian, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 126(2014) 9731-9735.
    [43]
    J. Du, F. Li, Y. Wang, Y. Zhu, L. Sun, ChemElectroChem 5(2018) 2064-2068.
    [44]
    S.M. Pawar, B.S. Pawar, P.T. Babar, A.T.A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, J. Kim, A.I. Inamdar, J.H. Kim, Mater. Lett. 241(2019) 243-247.
    [45]
    M. Pi, T. Yang, S. Wang, S. Chen, J. Mater. Res. 33(2018) 546-555.
    [46]
    P.D. Tran, M. Nguyen, S.S. Pramana, A. Bhattacharjee, S.Y. Chiam, J. Fize, M.J. Field, V. Artero, L.H. Wong, J. Loo, Energy Environ. Sci. 5(2012) 8912-8916.
    [47]
    H. Zheng, X. Huang, H. Gao, G. Lu, W. Dong, G. Wang, Chem. Eur. J. 25(2019) 1083-1089.
    [48]
    C.C. Hou, Q.Q. Chen, C.J. Wang, F. Liang, Z. Lin, W.F. Fu, Y. Chen, ACS Appl. Mater. Interfaces 8(2016) 23037-23048.
    [49]
    J. Cao, J. Zhou, Y. Zhang, Y. Wang, X. Liu, ACS Appl. Mater. Interfaces 10(2018) 1752-1760.
    [50]
    X. Liu, J. Dong, B. You, Y. Sun, RSC Adv. 6(2016) 73336-73342.
    [51]
    W. Hao, R. Wu, R. Zhang, Y. Ha, Z. Chen, L. Wang, Y. Yang, X. Ma, D. Sun, F. Fang, Adv. Energy Mater. 8(2018) 1801372.
    [52]
    X. Cao, Z. Yin, H. Zhang, Energy Environ. Sci. 7(2014) 1850-1865.
    [53]
    Y. Wang, S. Wang, X.W. Lou, Angew. Chem. Int. Ed. 58(2019) 17236-17240.
    [54]
    L. Chai, Q. Huang, H. Cheng, X. Wang, L. Zhang, T.T. Li, Y. Hu, J. Qian, S. Huang, Nanoscale 12(2020) 8785-8792.
    [55]
    S. Zhuo, J. Zhang, Y. Shi, Y. Huang, B. Zhang, Angew. Chem. Int. Ed. 127(2015) 5785-5788.
    [56]
    Z. Zhang, M.J. Zaworotko, Chem. Soc. Rev. 43(2014) 5444-5455.
    [57]
    W. Zhang, X. Wen, S. Yang, Y. Berta, Z.L. Wang, Adv. Mater. 15(2003) 822-825.
    [58]
    L. De Trizio, A. Figuerola, L. Manna, A. Genovese, C. George, R. Brescia, Z. Saghi, R. Simonutti, M.V. Huis, A. Falqui, ACS Nano 6(2012) 32-41.
    [59]
    H. Pfeiffer, F. Tancret, T. Brousse, Electrochim. Acta 50(2005) 4763-4770.
    [60]
    F. Yu, F. Li, B. Zhang, H. Li, L. Sun, ACS Catal. 5(2015) 627-630.
    [61]
    C.W. Huang, Y.-Y. Li, J. Phys. Chem. B 110(2006) 23242-23246.
    [62]
    F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan, Y. Lin, Adv. Energy Mater. 8(2018) 1800584.
    [63]
    B. Yuan, C. Li, L. Guan, K. Li, Y. Lin, J. Power Sources 451(2020) 227295.
    [64]
    K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, J. Am. Chem. Soc. 137(2015) 4119-4125.
    [65]
    T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 136(2014) 13925-13931.
    [66]
    Y. Li, P. Hasin, Y. Wu, Adv. Mater. 22(2010) 1926-1929.
    [67]
    A. Han, H. Zhang, R. Yuan, H. Ji, P. Du, ACS Appl. Mater. Interfaces 9(2017) 2240-2248.
    [68]
    C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, ACS Energy Lett. 4(2019) 747-754.
    [69]
    B. Chakraborty, R. Beltrán-Suito, V. Hlukhyy, J. Schmidt, P.W. Menezes, M. Driess, ChemSusChem 13(2020) 3222-3229.
    [70]
    A. Dutta, A.K. Samantara, S.K. Dutta, B.K. Jena, N. Pradhan, ACS Energy Lett. 1(2016) 169-174.
    [71]
    S.M. Pawar, B.S. Pawar, B. Hou, J. Kim, A.T.A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, A.I. Inamdar, J.L. Gunjakar, J. Mater. Chem. A 5(2017) 12747-12751.
    [72]
    C.W. Huang, S.C. Chiu, W.H. Lin, Y.Y. Li, J. Phys. Chem. C 112(2008) 926-931.
    [73]
    R. Beltrán-Suito, P.W. Menezes, M. Driess, J. Mater. Chem. A 7(2019) 15749-15756.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return