Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Yanxue Guo, Hui Liu, Dong Chen, Jianglan Qu, Jun Yang. High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos. Green Energy&Environment, 2022, 7(2): 229-235. doi: 10.1016/j.gee.2020.09.001
Citation: Yanxue Guo, Hui Liu, Dong Chen, Jianglan Qu, Jun Yang. High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos. Green Energy&Environment, 2022, 7(2): 229-235. doi: 10.1016/j.gee.2020.09.001

High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos

doi: 10.1016/j.gee.2020.09.001
  • To alleviate the secondary contamination of our environment when using quantum dots (QDs) to detect the organophosphorothioate pesticides (OPPs), we herein report a strategy to assemble magnetic Fe3O4 nanoparticles and luminescent CdTe quantum dots (QDs) into a composite nanosystem, which possesses both the magnetic property of Fe3O4 nanoparticles and the luminescent character of CdTe QDs, for the detection of chlorpyrifos, one of the typical OPPs. This strategy involves the isolated synthesis of magnetic Fe3O4 nanoparticles with positive charges and luminescent CdTe QDs with negative charges, and their subsequent assembly by electrostatic interaction. The as-prepared Fe3O4–CdTe nanocomposites have a detection limit as low as 10 ppb for chlorpyrifos, and are also selective for the OPPs with a phosphorothioate moiety (P=S bond). In specific, the Fe3O4–CdTe nanocomposites can be conveniently harvested by a normal magnet, and the recycling rate for both Cd and Fe determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) is higher than 96%, showing great potential in alleviating the Cd pollution on the environment.

     

  • loading
  • [1]
    C. Wang, A. Periasamy, H. Chang, Anal. Chem. 85(2013) 3263-3270.
    [2]
    X. Yan, H. Li, X. Wang, X. Su, Talanta 131(2015) 88-94.
    [3]
    X. Meng, C. Schultz, C. Cui, X. Li, H. Yu, Sens. Actuators B Chem. 215(2015) 577-583.
    [4]
    H. Zhao, X. Ji, B. Wang, N. Wang, X. Li, R. Ni, J. Ren, Biosens. Bioelectron. 65(2015) 23-30.
    [5]
    M. Furlong, A. Herring, J. Buckley, B. Goldman, J. Daniels, L. Engel, M. Wolff, J. Chen, J. Wetmur, D. Barr, S. Engel, Environ. Res. 158(2017) 737-747.
    [6]
    X. Lu, L. Tao, D. Song, Y. Li, F. Gao, Sens. Actuators B Chem. 255(2018) 2575-2581.
    [7]
    S. Berijani, Y. Assadi, M. Anbia, M.R.M. Hosseini, E. Aghaee, J. Chromatogr. A 1123(2006) 1-9.
    [8]
    C. Ye, Q. Zhou, X. Wang, Int. J. Environ. Anal. Chem. 88(2008) 461-471.
    [9]
    D. Calderón-Preciado, C. Jiménez-Cartagena, J.M. Peñuela, G. Bayona, Anal. Bioanal. Chem. 394(2009) 1319-1327.
    [10]
    A. Economou, H. Botitsi, S. Antoniou, D. Tsipi, J. Chromatogr. A 1216(2009) 5856-5867.
    [11]
    R. Weng, S. Lou, X. Pang, Y. Song, X. Su, Z. Xiao, J. Qiu, Food Chem. 309(2020) 125503.
    [12]
    V.A. Muckoy, P.N. Nomngong, J.C. Ngila, Int. J. Environ. Sci. Technol. 17(2020) 2325-2336.
    [13]
    D. Jin, Q. Xu, L. Yu, A. Mao, X. Hu, Food Chem. 194(2016) 959-965.
    [14]
    S. Su, S. Chen, C. Fan, Green Energy Environ. 3(2018) 97-106.
    [15]
    Y. Liu, H. Pu, D.-W. Sun, Trends Food Sci. Technol. 69(2017) 25-35.
    [16]
    Y. Liu, D.-W. Sun, J.-H. Cheng, Z. Han, Food Anal. Methods 11(2018) 2472-2484.
    [17]
    Y. Pan, D.-W. Sun, J.-H. Cheng, Z. Han, Food Anal. Methods 11(2018) 1568-1580.
    [18]
    H. Li, J. Guo, H. Ping, L. Liu, M. Zhang, F. Guan, C. Sun, Q. Zhang, Talanta 87(2011) 93-99.
    [19]
    M. Liang, K. Fan, Y. Pan, H. Jiang, F. Wang, D. Yang, D. Lu, J. Feng, J. Zhao, L. Yang, X. Yan, Anal. Chem. 85(2013) 308-312.
    [20]
    S. Chu, W. Huang, F. Shen, T. Li, S. Li, W. Xu, C. Lv, Q. Luo, J. Liu, Nanoscale 12(2020) 5829-5833.
    [21]
    D.-L. Liu, Y. Li, R. Sun, J.-Y. Xu, Y. Chen, C.-Y. Sun, J. Nanosci. Nanotechnol. 20(2020) 2114-2121.
    [22]
    X. Ge, P. Zhou, Q. Zhang, Z. Xia, S. Chen, P. Gao, Z. Zhang, L. Gu, S. Guo, Angew. Chem. Int. Ed. 99(2020) 232-236.
    [23]
    W. Wu, L. Liu, Z. Dai, J. Liu, S. Yang, L. Zhou, X. Xiao, C. Jiang, V.A.L. Roy, Sci. Rep. 5(2015) 10208.
    [24]
    M. Qi, X. Huang, Y. Zhou, L. Zhang, Y. Jin, Y. Peng, H. Jiang, S. Du, Food Chem. 197(2016) 723-729.
    [25]
    J. Li, D.-W. Sun, H. Pu, D.S. Jayas, Food Chem. 218(2017) 543-552.
    [26]
    X. Meng, J. Wei, X. Ren, J. Ren, F. Tang, Biosens. Bioelectron. 47(2013) 402-407.
    [27]
    J. Guo, H. Li, M. Xue, M. Zhang, X. Cao, Y. Luo, F. Shen, C. Sun, Food Anal. Methods 7(2014) 1247-1255.
    [28]
    X. Yan, Y. Song, C. Zhu, H. Li, D. Du, X. Su, Y. Lin, Anal. Chem. 90(2018) 2618-2624.
    [29]
    Z. Zhang, X. Ma, M. Jia, B. Li, J. Rong, X. Yang, Analyst 144(2019) 1282-1291.
    [30]
    K. He, Z. Li, L. Wang, Y. Fu, H. Quan, Y. Li, X. Wang, S. Gunasekaran, X. Xu, ACS Appl. Mater. Interfaces 11(2019) 26250-26260.
    [31]
    Y. Cai, J. Fang, B. Wang, F. Zhang, G. Shao, Y. Liu, Sens. Actuators B Chem. 292(2019) 156-163.
    [32]
    J. Wang, J. Zhang, J. Wang, G. Fang, J. Liu, S. Wang, J. Hazard Mater. 389(2020) 122074.
    [33]
    J. Wei, Y. Xue, J. Dong, S. Wang, H. Hu, H. Gao, P. Li, Y. Wang, Chin. Med. 15(2020) 22.
    [34]
    S. Liao, W. Han, H. Ding, H. Tan, S. Yang, Z. Wu, G. Shen, R. Yu, Anal. Chem. 85(2013) 4968-4973.
    [35]
    Q. Long, H. Li, Y. Zhang, S. Yao, Biosens. Bioelectron. 68(2015) 168-174.
    [36]
    C. Niu, Q. Liu, Z. Shang, L. Zhao, J. Ouyang, Nanoscale 7(2015) 8457-8465.
    [37]
    X. Dou, X. Chu, W. Kong, J. Luo, M. Yang, Anal. Chim. Acta 891(2015) 291-297.
    [38]
    K. Zhang, Q. Mei, G. Guan, B. Liu, S. Wang, Z. Zhang, Anal. Chem. 82(2010) 9579-9586.
    [39]
    D. Zhang, M. Deng, H. Cao, S. Zhang, H. Zhao, Green Energy Environ. 2(2017) 393-400.
    [40]
    Y. Huang, W. Chen, H. Li, M. Zhu, F. Liu, Q. Xue, Z. Pei, Z. Wang, L. Wang, Y. Huang, C. Zhi, Green Energy Environ. 3(2018) 86-96.
    [41]
    Z. Wang, J. Li, B. Liu, J. Hu, X. Yao, J. Li, J. Phys. Chem. B 109(2005) 23304-23311.
    [42]
    F.C. Meldrum, N.A. Kotov, J.H. Fendler, J. Phys. Chem. 98(1994) 4506-4510.
    [43]
    Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8(1996) 2209-2211.
    [44]
    B.E. Saltzman, Anal. Chem. 25(1953) 493-496.
    [45]
    R.P. Paradkar, R.R. Williams, Anal. Chem. 66(1994) 2752-2756.
    [46]
    E. Oh, M.-Y. Hong, D. Lee, S.-H. Nam, H.C. Yoon, H.-S. Kim, J. Am. Chem. Soc. 127(2005) 3270-3271.
    [47]
    E.R. Goldman, I.L. Medintz, J.L. Whitley, A. Hayhurst, A.R. Clapp, H.T. Uyeda, J.R. Deschamps, M.E. Lassman, H. Mattoussi, J. Am. Chem. Soc. 127(2005) 6744-6751.
    [48]
    S. Wang, M.-Y. Han, D. Huang, J. Am. Chem. Soc. 131(2009) 11692-11694.
    [49]
    R. Freeman, R. Gill, I. Shweky, M. Kotler, U. Banin, I. Willner, Angew. Chem. Int. Ed. 48(2009) 309-313.
    [50]
    B. Liu, L.L. McConnell, A. Torrents, Chemosphere 44(2001) 1315-1323.
    [51]
    T. Wu, Q. Gan, U. Jans, Environ. Sci. Technol. 40(2006) 5428-5434.
    [52]
    I. Haiduc, J. Organomet. Chem. 623(2001) 29-42.
    [53]
    N. Biricik, B. Gümgüm, Thermochim. Acta 417(2004) 43-45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return