Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Chen Xing, Daihui Yang, Yan Zhang, Tian Sun, Junfei Duan, Hussein A. Younus, Shiguo Zhang. Semi-closed synthesis of nitrogen and oxygen Co-doped mesoporous carbon for selective aqueous oxidation. Green Energy&Environment, 2022, 7(1): 43-52. doi: 10.1016/j.gee.2020.08.013
Citation: Chen Xing, Daihui Yang, Yan Zhang, Tian Sun, Junfei Duan, Hussein A. Younus, Shiguo Zhang. Semi-closed synthesis of nitrogen and oxygen Co-doped mesoporous carbon for selective aqueous oxidation. Green Energy&Environment, 2022, 7(1): 43-52. doi: 10.1016/j.gee.2020.08.013

Semi-closed synthesis of nitrogen and oxygen Co-doped mesoporous carbon for selective aqueous oxidation

doi: 10.1016/j.gee.2020.08.013
  • eteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors, hard/soft templates, and heteroatom-containing agents. Herein, we report a facile synthesis of N and O co-doped meso/micro-porous carbon (NOMC) by template-free carbonization of a small-molecule precursor in a semi-closed system. The semi-closed carbonizaiton process yields hydrophilic NOMCs with large surface area in a high yield. The porous structure as well as the elemental composition of NOMCs can be modulated by changing the holding time at a particular temperature. NOMCs as metal-free heterogeneous catalysts can selectively oxidize benzyl alcohol and its derivatives into aldehydes/ketones with > 85% conversion in aqueous solution, which is much higher than that of the control sample obtained in tube furnace (21% conversion), mainly due to their high N content, high percentage of pyridinic N, and large surface area. The presence of O-containing moieties also helps to improve the hydrophilicity and dispersion ability of catalysts and thus facilitates the mass transfer process during aqueous oxidation. The NOMC catalysts also dispayed excellent activity for a wide range of substrates with a selectivity of > 99%.

     

  • • NOMCs are obtained by template-free carbonization of a single precursor in a semi-closed system, without any inert gas protection. • The NOMCs can be used as metal-free catalysts for highly selective aqueous oxidation of alcohols under mild conditions. • The NOMCs can be easily recycled and reused.
  • loading
  • [1]
    X. Liu, L.M. Dai, Nat. Rev. Mater. 1(2016) 16064.
    [2]
    Z.B. Yang, J. Ren, Z.T. Zhang, X.L. Chen, G.Z. Guan, L.B. Qiu, Y. Zhang, H.S. Peng, Chem. Rev. 115(2015) 5159-5223.
    [3]
    W. Ren, L.L. Xiong, X.H. Yuan, Z.W. Yu, H. Zhang, X.G. Duan, S.B. Wang, Environ. Sci. Technol. 53(2019) 14595-14603.
    [4]
    W. Ren, L.L. Xiong, G. Nie, H. Zhang, X.G. Duan, S.B. Wang, Environ. Sci. Technol. 54(2020) 1267-1275.
    [5]
    W. Ren, G. Nie, P. Zhou, H. Zhang, X.G. Duan, S.B. Wang, Environ. Sci. Technol. 54(2020) 6438-6447.
    [6]
    C.D. Liang, Z.J. Li, S. Dai, Angew. Chem. Int. Ed. 47(2008) 3696-3717.
    [7]
    J.P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 6(2013) 2839-2855.
    [8]
    R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Carroll, Nano Lett. 1(2001) 457-460.
    [9]
    N. Kan-Nari, S. Okamura, S. Fujita, J. Ozaki, M. Arai, Adv. Synth. Catal. 352(2010) 1476-1484.
    [10]
    S.G. Zhang, K. Dokko, M. Watanabe, Chem. Mater. 26(2014) 2915-2926.
    [11]
    K.P. Gong, D. Feng, Z. Xia, Science 323(2009) 760-764.
    [12]
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19(2009) 438-447.
    [13]
    G.M. Zhou, L.C. Yin, D.W. Wang, L. Li, S.F. Pei, I.R. Gentle, F. Li, H.M. Cheng, ACS Nano 7(2013) 5367-5375.
    [14]
    S. Chen, J.J. Duan, M. Jaroniec, S.Z. Qiao, Adv. Mater. 26(2014) 2925-2930.
    [15]
    X. Shang, J.Q. Chi, S.S. Lu, B. Dong, K.L. Yan, W.K. Gao, J.B. Zeng, S. Gao, Y.M. Chai, C.G. Liu, Int. J. Hydrogen Energy 42(2017) 28287-28297.
    [16]
    J.X. Song, T. Xu, M.L. Gordin, P.Y. Zhu, D.P. Lv, Y.B. Jiang, Y.S. Chen, Y.H. Duan, D.H. Wang, Adv. Funct. Mater. 24(2014) 1243-1250.
    [17]
    P.Y. Zhu, J.X. Song, D.P. Lv, D.H. Wang, C. Jaye, D.A. Fischer, T.P. Wu, Y.S. Chen, J. Phys. Chem. C 118(2014) 7765-7771.
    [18]
    R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 135(2013) 7823-7826.
    [19]
    H. Zhang, K. Lv, B. Fang, M.C. Forster, R. Dervişoğlu, L.B. Andreas, K. Zhang, S.L. Chen, Electrochim. Acta 292(2018) 942-950.
    [20]
    Y.Y. Meng, X.X. Zou, X.X. Huang, A. Goswami, Z.W. Liu, T. Asefa, Adv. Mater. 26(2014) 6510-6516.
    [21]
    W. Xia, D.S. Su, A. Birkner, L. Ruppel, Y.M. Wang, C. Wöll, J. Qian, C.H. Liang, G. Marginean, W. Brandl, M. Muhler, Chem. Mater. 17(2005) 5737-5742.
    [22]
    T.G. Ros, A.J.V. Dillen, J.W. Geus, D.C. Koningsberger, Chem. Eur. J. 8(2002) 1151-1162.
    [23]
    T. Mallat, A. Baiker, Chem. Rev. 104(2004) 3037-3058.
    [24]
    J.L. Long, X.Q. Xie, J. Xu, Q. Gu, L.M. Chen, X.X. Wang, ACS Catal. 2(2012) 622-631.
    [25]
    H. Watanabe, S. Asano, S.I. Fujita, H. Yoshida, M. Arai, ACS Catal. 5(2015) 2886-2894.
    [26]
    D.R. Dreyer, H.P. Jia, C.W. Bielawski, Angew. Chem. Int. Ed. 49(2010) 6813-6816.
    [27]
    T.Y. Ma, L. Liu, Z.Y. Yuan, Chem. Soc. Rev. 42(2013) 3977-4003.
    [28]
    J.P. Paraknowitsch, J. Zhang, D.S. Su, A. Thomas, M. Antonietti, Adv. Mater. 22(2010) 87-92.
    [29]
    W.H. Suh, J.K. Kang, Y.H. Suh, M. Tirrell, K.S. Suslick, G.D. Stucky, Adv. Mater. 23(2011) 2332-2338.
    [30]
    Y.J. Men, M. Ambrogi, B.H. Han, J.Y. Yuan, Int. J. Mol. Sci. 17(2016) 532-540.
    [31]
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25(2009) 10397-10401.
    [32]
    J. Chen, B.W. Yao, C. Li, G.Q. Shi, Carbon 64(2015) 225-229.
    [33]
    S.G. Zhang, T. Mandai, K. Ueno, K. Dokko, M. Watanabe, Nano Energy 13(2015) 376-386.
    [34]
    K.S. Sing, Pure Appl. Chem. 57(1985) 603-619.
    [35]
    Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Carbon 34(1996) 193-200.
    [36]
    H.L. Wang, Q.M. Gao, J. Hu, J. Am. Chem. Soc. 131(2009) 7016-7022.
    [37]
    D.Y. Qu, Chem. Eur. J. 14(2008) 1040-1046.
    [38]
    A. Das, B. Chakraborty, A.K. Sood, Bull. Mater. Sci. 31(2008) 579-584.
    [39]
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'homme, I.A. Aksay, R. Car, Nano Lett. 8(2008) 36-41.
    [40]
    S.G. Zhang, S. Tsuzuki, K. Ueno, K. Dokko, M. Watanabe, Angew. Chem. Int. Ed. 54(2015) 1302-1306.
    [41]
    S.G. Zhang, M.S. Miran, A. Ikoma, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 136(2014) 1690-1693.
    [42]
    Y.M. Liu, X. Quan, X.F. Fan, H. Wang, S. Chen, Angew. Chem. Int. Ed. 54(2015) 6837-6841.
    [43]
    Y. Yan, Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Chem. Commun. 48(2012) 10663-10665.
    [44]
    S. Kundu, Y.M. Wang, W. Xia, M. Muhler, J. Phys. Chem. C 112(2008) 16869-16878.
    [45]
    A.M. Oickle, S.L. Goertzen, K.R. Hopper, Y.O. Abdalla, H.A. Andreas, Carbon 48(2010) 3313-3322.
    [46]
    S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas, Carbon 48(2010) 1252-1261.
    [47]
    S.J. Park, W.Y. Jung, J. Colloid Interface Sci. 250(2002) 93-98.
    [48]
    M.A. Patel, F.X. Luo, K. Savaram, P. Kucheryavy, Q.Q. Xie, C. Flach, R. Mendelsohn, E. Garfunkel, J.V. Lockard, H.X. He, Carbon 114(2017) 383-392.
    [49]
    M.A. Patel, F.X. Luo, M.R. Khoshi, E. Rabie, Q. Zhang, C.R. Flach, R. Mendelsohn, E. Garfunkel, M. Szostak, H.X. He, ACS Nano 10(2016) 2305-2315.
    [50]
    Z.Y. Long, L.M. Sun, W.J. Zhu, G.J. Chen, X.C. Wang, W. Sun, Chem. Commun. 54(2018) 8991-8994.
    [51]
    S.I. Fujita, K. Yamada, A. Katagiri, H. Watanabe, H. Yoshida, M. Arai, Appl. Catal. A-Gen. 488(2014) 171-175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return