Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Liang Zeng, Di Wei, Sam Toan, Zhao Sun, Zhiqiang Sun. Sorption-enhanced chemical looping oxidative steam reforming of methanol for on-board hydrogen supply. Green Energy&Environment, 2022, 7(1): 145-155. doi: 10.1016/j.gee.2020.08.011
Citation: Liang Zeng, Di Wei, Sam Toan, Zhao Sun, Zhiqiang Sun. Sorption-enhanced chemical looping oxidative steam reforming of methanol for on-board hydrogen supply. Green Energy&Environment, 2022, 7(1): 145-155. doi: 10.1016/j.gee.2020.08.011

Sorption-enhanced chemical looping oxidative steam reforming of methanol for on-board hydrogen supply

doi: 10.1016/j.gee.2020.08.011
  • Hydrogen is an indispensable energy carrier for the sustainable development of human society. Nevertheless, its storage, transportation, and in situ generation still face significant challenges. Methanol can be used as an intermediate carrier for hydrogen supplies, providing hydrogen energy through instant methanol conversion. In this study, a sorption-enhanced, chemical-looping, oxidative steam methanol-reforming (SECL-OSRM) process is proposed using CuO-MgO for the on-board hydrogen supply, which could be a promising method for safe and efficient hydrogen production. Aspen Plus software was used for feasibility verification and parameter optimization of the SECL-OSRM process. The effects of CuO/CH3OH, MgO/CH3OH, and H2O/CH3OH mole ratios and of temperature on H2 production rate, H utilization efficiency, CH3OH conversion, CO concentration, and system heat balance are discussed thoroughly. The results indicate that the system can be operated in autothermal conditions with high-purity hydrogen (99.50 vol%) and ultra-low-concentration CO (< 50 ppm) generation, which confirms the possibility of integrating low-temperature proton-exchange membrane fuel cells (LT-PEFMCs) with the SECL-OSRM process. The simulation results indicate that the CO can be modulated in a lower concentration by reducing the temperature and by improving the H2O/CH3OH and MgO/CH3OH mole ratios.

     

  • loading
  • [1]
    P. Prasertcharoensuk, S.J. Bull, A.N. Phan, Renew. Energy 143(2019) 112-120.
    [2]
    Z. Sun, S. Chen, J. Hu, A. Chen, A.H. Rony, C.K. Russell, W. Xiang, M. Fan, M.D. Dyar, E.C. Dklute, Appl. Energy 211(2018) 431-442.
    [3]
    L. Deng, H. Kvamsdal, Green Energy Environ. 1(2016) 179.
    [4]
    C. Liu, Z. Zhang, W. Liu, X. Du, S. Liu, Y. Cui, Green Energy Environ. 2(2017) 436-441.
    [5]
    M. Lutz, M. Bhouri, M. Linder, I. Burger, Appl. Energy 236(2019) 1034-1048.
    [6]
    S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, Catal. Today 120(2007) 246-256.
    [7]
    M. Yadav, Q. Xu, Energy Environ. Sci. 5(2012) 9698-9725.
    [8]
    X. Zhao, K. Wu, W. Liao, Y. Wang, X. Hou, M. Jin, Z. Suo, H. Ge, Green Energy Environ. 4(2019) 300-310.
    [9]
    N. Takeichi, H. Senoh, T. Yokota, H. Tsuruta, K. Hamada, H.T. Takeshita, H. Tanaka, T. Kiyobayashi, T. Takano, N. Kuriyama, Int. J. Hydrogen Energy 28(2003) 1121-1129.
    [10]
    M.L. Perry, T.F. Fuller, J. Electrochem. Soc. 149(2002) S59-S67.
    [11]
    G. Deluga, J. Salge, L. Schmidt, X. Verykios, Science 303(2004) 993-997.
    [12]
    P. Ribeirinha, C. Mateos-Pedrero, M. Boaventura, J. Sousa, A. Mendes, Appl. Catal. B Environ. 221(2018) 371-379.
    [13]
    N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'keeffe, O.M. Yaghi, Science 300(2003) 1127-1129.
    [14]
    A.M. Seayad, D.M. Antonelli, Adv. Mater. 16(2004) 765-777.
    [15]
    L.Y. Molefe, N.M. Musyoka, J.W. Ren, H.W. Langmi, M. Mathe, P.G. Ndungu, Front. Chem. 7(2019) 864.
    [16]
    S.-I. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Chem. Rev. 107(2007) 4111-4132.
    [17]
    P. Makowski, A. Thomas, P. Kuhn, F. Goettmann, Energy Environ. Sci. 2(2009) 480-490.
    [18]
    Y. Wang, N. Shah, G.P. Huffman, Catal. Today 99(2005) 359-364.
    [19]
    L. Mayr, X.R. Shi, N. Köpfle, B. Klötzer, D.Y. Zemlyanov, S. Penner, J. Catal. 339(2016) 111-122.
    [20]
    X.Y. Xu, Y. Liu, F. Zhang, W. Di, Y.L. Zhang, Catal. Today 298(2017) 61-68.
    [21]
    Z. Sun, Z.Q. Sun, J. Cent. South Univ. 27(2020) 1074-1103.
    [22]
    S. Sá, H. Silva, L. Brandão, J.M. Sousa, A. Mendes, Appl. Catal. B Environ. 99(2010) 43-57.
    [23]
    C. Azenha, C. Mateos-Pedrero, S. Queirós, P. Concepción, A. Mendes, Appl. Catal. B Environ. 203(2017) 400-407.
    [24]
    H.S. Wang, K.Y. Huang, Y.J. Huang, Y.C. Su, F.G. Tseng, Appl. Energy 138(2015) 21-30.
    [25]
    W.H. Chen, Y.Z. Guo, C.C. Chen, Appl. Energy 232(2018) 79-88.
    [26]
    J.H. Kim, Y.S. Jang, D.H. Kim, Chem. Eng. J. 338(2018) 752-763.
    [27]
    S. Jampa, A.M. Jamieson, T. Chaisuwan, A. Luengnaruemitchai, S. Wongkasemjit, Int. J. Hydrogen Energy 42(2017) 15073-15084.
    [28]
    L. Mayr, N. Kopfle, B. Klotzer, T. Gotsch, J. Bernardi, S. Schwarz, T. Keilhauer, M. Armbruster, S. Penner, J. Phys. Chem. C 120(2016) 25395-25404.
    [29]
    J. Cao, Y.F. Ma, G.Q. Guan, X.G. Hao, X.L. Ma, Z.D. Wang, K. Kusakabe, A. Abudula, Appl. Catal. B Environ. 189(2016) 12-18.
    [30]
    H.F. Oetjen, V. Schmidt, U. Stimming, F. Trila, J. Electrochem. Soc. 143(1996) 3838-3842.
    [31]
    T.Y.C. Qi, Y. Yang, Y.J. Wu, J. Wang, P. Li, J.G. Yu, Chem. Eng. Process 127(2018) 72-82.
    [32]
    D. Iruretagoyena, K. Hellgardt, D. Chadwick, Int. J. Hydrogen Energy 43(2018) 4211-4222.
    [33]
    X. Wu, S.F. Wu, J. Energy Chem. 24(2015) 315-321.
    [34]
    B. Wang, L.H. Xie, X.Q. Wang, X.M. Liu, J.P. Li, J.R. Li, Green Energy Environ. 3(2018) 191-228.
    [35]
    L. Li, B. Zhang, F. Wang, N. Zhao, F. Xiao, W. Wei, Y. Sun, Energy Fuels 27(2013) 5388-5396.
    [36]
    L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. Xiao, W. Wei, Y. Sun, Energy Fuels 24(2010) 5773-5780.
    [37]
    S.C. Lee, H.J. Chae, S.J. Lee, B.Y. Choi, C.K. Yi, J.B. Lee, C.K. Ryu, J.C. Kim, Environ. Sci. Technol. 42(2008) 2736-2741.
    [38]
    Z. Sun, X. Wu, C.K. Russell, M.D. Dyar, E.C. Sklute, S. Toan, M. Fan, L. Duan, W. Xiang, J. Mater. Chem. A 7(2019) 1216-1226.
    [39]
    Z. Sun, L. Zeng, C.K. Russell, S. Assabumrungrat, S. Chen, L. Duan, W. Xiang, J. Gong, ACS Sustain. Chem. Eng. 7(2018) 2558-2568.
    [40]
    N. Khallaghi, D.P. Hanak, V. Manovic, Appl. Energy 249(2019) 237-244.
    [41]
    X.M. Cheng, K.Z. Li, X. Zhu, Y.G. Wei, Z.H. Li, Y.H. Long, M. Zheng, D. Tian, H. Wang, Appl. Energy 230(2018) 696-711.
    [42]
    L. Neal, A. Shafiefarhood, F.X. Li, Appl. Energy 157(2015) 391-398.
    [43]
    L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J.L. Gong, Nat. Rev. Chem. 2(2018) 349-364.
    [44]
    Z. Sun, X. Zhang, H. Li, T. Liu, S. Sang, S. Chen, L. Duan, L. Zeng, W. Xiang, J. Gong, Appl. Catal. B Environ. 269(2020) 118758.
    [45]
    A. Basile, A. Parmaliana, S. Tosti, A. Iulianelli, F. Gallucci, C. Espro, J. Spooren, Catal. Today 137(2008) 17-22.
    [46]
    H. Ajamein, M. Haghighi, Energy Convers. Manag. 118(2016) 231-242.
    [47]
    C. Rameshan, W. Stadlmayr, S. Penner, H. Lorenz, N. Memmel, M. Hävecker, R. Blume, D. Teschner, T. Rocha, D. Zemlyanov, Angew. Chem. Int. Ed. 51(2012) 3002-3006.
    [48]
    Y.S. Zhang, S.J. Zhang, J.L. Gossage, H.H. Lou, T.J. Benson, Energy Fuel. 28(2014) 2717-2726.
    [49]
    G. Rabenstein, V. Hacker, J. Power Sources 185(2008) 1293-1304.
    [50]
    O. Ozcan, A.N. Akin, Int. J. Hydrogen Energy 44(2019) 14117-14126.
    [51]
    K. Ma, Z.H. Cui, Z.T. Zhang, J.L. Huang, Z.R. Sun, Y. Tian, T. Ding, X.G. Li, ChemCatChem 10(2018) 4010-4017.
    [52]
    H.F. Li, H. Tian, S. Chen, Z. Sun, T. Liu, R. Liu, S. Assabumrungrat, J. Saupsord, R.T. Mu, C.L. Pei, J.L. Gong, Appl. Catal. B Environ. 276(2020) 119052.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (214) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return