Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Xi Chen, Gongping Liu, Wanqin Jin. Natural gas purification by asymmetric membranes: An overview. Green Energy&Environment, 2021, 6(2): 176-192. doi: 10.1016/j.gee.2020.08.010
Citation: Xi Chen, Gongping Liu, Wanqin Jin. Natural gas purification by asymmetric membranes: An overview. Green Energy&Environment, 2021, 6(2): 176-192. doi: 10.1016/j.gee.2020.08.010

Natural gas purification by asymmetric membranes: An overview

doi: 10.1016/j.gee.2020.08.010
  • Natural gas, as a very important source of energy and chemical feedstock, can be used in place of coal to lower net carbon dioxide emissions. Membrane separation technology is an attractive alternative for natural gas purification where the impurities represented by acid gases (CO2 and H2S) as well as inert gases (N2) must be removed to meet the transportation and usage specifications. From the economic benefits viewpoint, asymmetric membranes are required for industrial manufacture and applications. This paper aims to review the latest development of various kinds of asymmetric membranes for natural gas purification, mainly focusing on CO2 removal from CH4, including H2S and N2 separation from CH4 as well. According to material types, polymeric, inorganic, mixed-matrix and carbon molecular sieve membranes are introduced. The associated fabrication approaches and transport properties are discussed for each kinds of asymmetric membranes. Towards the practical implementation, an emphasis is placed on hollow fiber asymmetric structure for these polymeric, mixed-matrix and carbon molecular sieve membranes.

     

  • loading
  • [1]
    B. Shimekit, H. Mukhtar, Natural Gas Purification Technologies - Major Advances for CO2 Separation and Future Directions, InTech Open, Rijeka, 2012, pp. 235-270.
    [2]
    R.W. Baker, K.A. Lokhandwala, Ind. Eng. Chem. Res. 47 (2008) 2109-2121.
    [3]
    C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Kitamura, Appl. Energy 204 (2017) 353-361.
    [4]
    J.C. Polasek, J.A. Bullin, Energy Prog. 4 (1984) 146-150.
    [5]
    H.K. Knuutila, R. Rennemo, A.F. Ciftja, Green Energy Environ. 4 (2019) 439-452.
    [6]
    W.J. Koros, R. Mahajan, J. Membr. Sci. 175 (2000) 181-196.
    [7]
    R.W. Baker, B.T. Low, Macromolecules 47 (2014) 6999-7013.
    [8]
    A.a.M. Salih, C. Yi, H. Peng, B. Yang, L. Yin, W. Wang, J. Membr. Sci. 472 (2014) 110-118.
    [9]
    Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 1 (2016) 102-128.
    [10]
    R.W. Baker, Ind. Eng. Chem. Res. 41 (2002) 1393-1411.
    [11]
    P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res. 48 (2009) 4638-4663.
    [12]
    A. Callison, G. Davidson, Oil Gas J. 105 (2007).
    [13]
    Air products. https://www.prism-membranes.com/.
    [14]
    Membrane Technology and Research, Membrane solutions for Industrial separations. https://www.mtrinc.com/.
    [15]
    C.A. Scholes, G.W. Stevens, S.E. Kentish, Fuel 96 (2012) 15-28.
    [16]
    A.Y. Houde, B. Krishnakumar, S.G. Charati, S.A. Stern, J. Appl. Polym. Sci. 62 (1996) 2181-2192.
    [17]
    L.M. Robeson, J. Membr. Sci. 320 (2008) 390-400.
    [18]
    H. Ohya, V.V. Kudryavtsev, S.I. Semenova, Polyimide Membranes: Applications, Fabrications, and Properties, first ed., Gordon and Breach, Otowa, 1997.
    [19]
    T. Kim, W.J. Koros, G.R. Husk, K.C. Obrien, J. Membr. Sci. 37 (1988) 45-62.
    [20]
    K. Matsumoto, P. Xu, Journal of Appl. Polym. Sci. 47 (1993) 1961-1972.
    [21]
    L. Xu, C. Zhang, M. Rungta, W. Qiu, J. Liu, W.J. Koros, J. Membr. Sci. 459 (2014) 223-232.
    [22]
    A. Bos, I.G.M. Punt, M. Wessling, H. Strathmann, Sep. Purif. Technol. 14 (1998) 27-39.
    [23]
    K. Vanherck, G. Koeckelberghs, I.F.J. Vankelecom, Prog. Polym. Sci. 38 (2013) 874-896.
    [24]
    C. Cao, T. Chung, Y. Liu, R. Wang, K.P. Pramoda, J. Membr. Sci. 216 (2003) 257-268.
    [25]
    W. Qiu, C.C. Chen, L. Xu, L. Cui, W.J. Koros, Macromolecules 44 (2011) 6046-6056.
    [26]
    W. Qiu, L. Xu, C.C. Chen, D. R. Paul, W.J. Koros, Polymer 54 (2013) 6226-6235.
    [27]
    L. Deng, Y. Xue, J. Yan, C. H. Lau, B. Cao, P. Li, J. Membr. Sci. 583 (2019) 40-48.
    [28]
    A.M.W. Hillock, S.J. Miller, W.J. Koros, J. Membr. Sci. 314 (2008) 193-199.
    [29]
    C. Ma, W.J. Koros, J. Membr. Sci. 428 (2013) 251-259.
    [30]
    J.J. Krol, M. Boerrigter, G.H. Koops, J. Membr. Sci. 184 (2001) 275-286.
    [31]
    G. Liu, N. Li, S.J. Miller, D.J. Kim, S. Yi, Y. Labreche, W.J. Koros, Angew. Chem. Int. Ed. 55 (2016) 13754-13758.
    [32]
    G. Liu, Y. Labreche, N. Li, Y. Liu, C. Zhang, S.J. Miller, V.P. Babu, N. Bhuwania, W.J. Koros, AlChE J. 65 (2019) 1269-1280.
    [33]
    B. Kraftschik, W.J. Koros, Macromolecules 46 (2013) 6908-6921.
    [34]
    V.P. Babu, B. Kraftschik, W.J. Koros, J. Membr. Sci. 558 (2018) 94-105.
    [35]
    Z. Liu, Y. Liu, G. Liu, W. Qiu, W.J. Koros, Ind. Eng. Chem. Res. 59 (2020) 5333-5339.
    [36]
    N.B. Mckeown, Int. Sch. Res. Notices 2012 (2012) 1-16.
    [37]
    H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E.M. Van Wagner, B.D. Freeman, D.J. Cookson, Science 318 (2007) 254-258.
    [38]
    S. Kim, S.H. Han, Y.M. Lee, J. Membr. Sci. 403 (2012) 169-178.
    [39]
    M.L. Jue, V. Breedveld, R.P. Lively, J. Membr. Sci. 530 (2017) 33-41.
    [40]
    Z. Tian, B. Cao, P. Li, J. Membr. Sci. 560 (2018) 87-96.
    [41]
    S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, Energy and Environ. Sci. 9 (2016) 1863-1890.
    [42]
    S. Li, W. Zhi, X. Yu, J. Wang, S. Wang, Adv. Mater. 24 (2012) 3196-3200.
    [43]
    N. Kosinov, J. Gascon, F. Kapteijn, E.J.M. Hensen, J. Membr. Sci. 499 (2016) 65-79.
    [44]
    M. Shah, M.C. Mccarthy, S. Sachdeva, A.K. Lee, H. Jeong, Ind. Eng. Chem. Res. 51 (2012) 2179-2199.
    [45]
    N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Chem. Soc. Rev. 44 (2015) 7128-7154.
    [46]
    S.J. Chung, J.H. Park, D. Li, J. Ida, I. Kumakiri, J.Y.S. Lin, Ind. Eng. Chem. Res. 44 (2005) 7999-8006.
    [47]
    Y. Zhang, J. Sunarso, S. Liu, R. Wang, Int. J. Greenh. Gas Control 12 (2013) 84-107.
    [48]
    Y. Cui, H. Kita, K. Okamoto, J. Mater. Chem. 14 (2004) 924-932.
    [49]
    B. Liu, R. Zhou, K. Yogo, H. Kita, J. Membr. Sci. 573 (2019) 333-343.
    [50]
    S. Li, J.L. Falconer, R.D. Noble, J. Membr. Sci. 241 (2004) 121-135.
    [51]
    S. Li, J.L. Falconer, R.D. Noble, Adv. Mater. 18 (2006) 2601-2603.
    [52]
    M.A. Carreon, S. Li, J.L. Falconer, R.D. Noble, Adv. Mater. 20 (2008) 729-732.
    [53]
    S. Zhong, N. Bu, R. Zhou, W. Jin, M. Yu, S. Li, J. Membr. Sci. 520 (2016) 507-514.
    [54]
    S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima, S. Yoshida, Ind. Eng. Chem. Res. 46 (2007) 6989-6997.
    [55]
    L. Wang, C. Zhang, X. Gao, L. Peng, J. Jiang, X. Gu, J. Membr. Sci. 539 (2017) 152-160.
    [56]
    S.R. Venna, M.A. Carreon, Chem. Eng. Sci. 124 (2015) 3-19.
    [57]
    Y. Huang, L. Wang, Z. Song, S. Li, M. Yu, Angew. Chem. Int. Ed. 54 (2015) 10843-10847.
    [58]
    Z. Zong, M.A. Carreon, J. Membr. Sci. 524 (2017) 117-123.
    [59]
    W.J. Koros, C. Zhang, Nat. Mater. 16 (2017) 289-297.
    [60]
    B. Wang, M. Sheng, J. Xu, S. Zhao, J. Wang, Z. Wang, Small Methods 4 (2020) 1900749-1900764.
    [61]
    C. Zhang, R. Kumar, W.J. Koros, AlChE J. 65 (2019) 16611-16617.
    [62]
    S. Mallakpour, A. Zadehnazari, Bull. Mater. Sci. 37 (2014) 1065-1077.
    [63]
    D.S. Sholl, J.K. Johnson, Science 312 (2006) 1003-1004.
    [64]
    H. Cong, J. Zhang, M. Radosz, Y. Shen, J. Membr. Sci. 294 (2007) 178-185.
    [65]
    H. Sun, T. Wang, Y. Xu, W. Gao, P. Li, Q.J. Niu, Sep. Purif. Technol. 177 (2017) 327-336.
    [66]
    B. Zhang, J. Fu, Q. Zhang, C. Yi, B. Yang, J. Appl. Polym. Sci. 136 (2019) 47848-47859.
    [67]
    Z. Qiao, S. Zhao, J. Wang, S. Wang, Z. Wang, M.D. Guiver, Angew. Chem. Int. Ed. 55 (2016) 9321-9325.
    [68]
    Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai, Q. Wang, D. Zhao, J. Membr. Sci. 539 (2017) 213-223.
    [69]
    R. Mahajan, W.J. Koros, Ind. Eng. Chem. Res. 39 (2000) 2692-2696.
    [70]
    C.M. Zimmerman, A. Singh, W.J. Koros, J. Membr. Sci. 137 (1997) 145-154.
    [71]
    T.T. Moore, W.J. Koros, J. Mol. Struct. 739 (2005) 87-98.
    [72]
    D.Q. Vu, W.J. Koros, S.J. Miller, J. Membr. Sci. 211 (2003) 335-348.
    [73]
    S. Shu, Husain, Shabbir, W.J. Koros, J. Phys. Chem. C 111 (2007) 652-657.
    [74]
    S. Shu, Husain, Shabbir, W.J. Koros, Chem. Mater. 19 (2007) 4000-4006.
    [75]
    S. Husain, W.J. Koros, J. Membr. Sci. 288 (2007) 195-207.
    [76]
    B. Wang, L. Xie, X. Wang, X. Liu, J. Li, J. Li, Green Energy Environ. 3 (2018) 191-228.
    [77]
    Y. Hua, H. Wang, Q. Li, G. Chen, G. Liu, J. Duan, W. Jin, J. Mater. Chem. 6 (2018) 599-606.
    [78]
    J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li, W. Jin, J. Membr. Sci. 513 (2016) 155-165.
    [79]
    S. Basu, C.-O. Angels, F.J.V. Ivo, Sep. Purif. Technol. 81 (2011) 31-40.
    [80]
    R. Xu, Z. Wang, M. Wang, Z. Qiao, J. Wang, J. Membr. Sci. 573 (2019) 455-464.
    [81]
    X. Cao, H. Xu, S. Dong, J. Xu, Z. Qiao, S. Zhao, J. Wang, Z. Wang, J. Membr. Sci. 601 (2020) 117882.
    [82]
    K. Duan, J. Wang, Y. Zhang, J. Liu, J. Membr. Sci. 572 (2019) 588-595.
    [83]
    Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, D. Zhao, Chem. Mater. 28 (2016) 1277-1285.
    [84]
    X. Cao, Z. Wang, Z. Qiao, S. Zhao, J. Wang, ACS Appl. Mater. Interfaces 11 (2019) 5306-5315.
    [85]
    M. Tong, Y. Lan, Q. Yang, C. Zhong, Green Energy Environ. 3 (2018) 107-119.
    [86]
    K.M. Steel, W.J. Koros, Carbon 43 (2005) 1843-1856.
    [87]
    N. Bhuwania, Y. Labreche, C.S.K. Achoundong, J. Baltazar, S.K. Burgess, S. Karwa, L. Xu, C.L. Henderson, P.J. Williams, W.J. Koros, Carbon 76 (2014) 417-434.
    [88]
    S. Haider, A. Lindbrathen, J. A. Lie, P. V. Carstensen, T. Johannessen, M. Hagg, Green Energy Environ. 3 (2018) 266-276.
    [89]
    D.Q. Vu, W.J. Koros, S.J. Miller, Ind. Eng. Chem. Res. 41 (2002) 367-380.
    [90]
    D.Q. Vu, W.J. Koros, S.J. Miller, Ind. Eng. Chem. Res. 42 (2003) 1064-1075.
    [91]
    C. Zhang, G.B. Wenz, P.J. Williams, J. Mayne, G. Liu, W.J. Koros, Ind. Eng. Chem. Res. 56 (2017) 10482-10490.
    [92]
    C. Ma, W.J. Koros, Ind. Eng. Chem. Res. 52 (2013) 10495-10505.
    [93]
    L. Xu, M. Rungta, J. Hessler, W. Qiu, M.K. Brayden, M.V. Martinez, G. Barbay, W.J. Koros, Carbon 80 (2014) 155-166.
    [94]
    G.B. Wenz, W.J. Koros, AlChE J. 63 (2017) 751-760.
    [95]
    G. Liu, W. Jin, N. Xu, Angew. Chem. Int. Ed. 55 (2016) 13384-13397.
    [96]
    S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X.-Z. Cao, M. D. Guiver, Z. Jiang, Energy Environ. Sci. 9 (2016) 3107-3112.
    [97]
    L. Cheng, G. Liu, Q. Jin, Acta Phys. -Chim. Sin. 35 (2019) 1090-1098.
    [98]
    G. Liu, Chernikova, Y. Liu, K. Zhang, Y. Belmabkhout, O. Shekhah, C. Zhang, S. Yi, M. Eddaoudi, W.J. Koros, Nat. Mater. 17 (2018) 283-289.
    [99]
    G. Liu, A. Cadiau, Y. Liu, K. Adil, V. Chernikova, I. Carja, Y. Belmabkhout, M. Karunakaran, O. Shekhah, C. Zhang, Angew. Chem. Int. Ed. Engl. 57 (2018) 14811-14816.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return