Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Lili Jiang, Ke Mei, Kaihong Chen, Rina Dao, Haoran Li, Congmin Wang. Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids. Green Energy&Environment, 2022, 7(1): 130-136. doi: 10.1016/j.gee.2020.08.008
Citation: Lili Jiang, Ke Mei, Kaihong Chen, Rina Dao, Haoran Li, Congmin Wang. Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids. Green Energy&Environment, 2022, 7(1): 130-136. doi: 10.1016/j.gee.2020.08.008

Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids

doi: 10.1016/j.gee.2020.08.008
  • An efficient method for prediction in the capture of SO2 from flue gas by imidazolium ionic liquids was reported, where the concentration of SO2 is 2000 ppm. On the basis of quantitative calculations through a combination of Langmuir simulation, theoretical calculation and quantum chemical method, SO2 absorption and desorption performance from flue gas by twelve kinds of imidazolium ionic liquids with different anions were designed and predicted. Then, among them, five kinds of imidazolium ionic liquids were chosen and prepared to investigate their behavior of SO2 absorption capacity, desorption residue, and available absorption capacity. The results indicated that the experimental values were in good agreement with the predicted values. Thus, an ideal ionic liquid[Emim] [Tetz] was obtained through the predictive method for the capture of SO2 of 2000 ppm, which showed high available absorption capacity of 0.24 g SO2 per g ionic liquid and excellent reversibility.

     

  • loading
  • [1]
    R.K. Srivastava, W. Jozewicz, J. Air Waste Manage. 51(2001) 1676-1688.
    [2]
    Y.J. Zheng, S. Kiil, J.E. Johnsson, Chem. Eng. Sci. 58(2003) 4695-4703.
    [3]
    X.X. Ma, T. Kaneko, T. Tashimo, T. Yoshida, K. Kato, Chem. Eng. Sci. 55(2000) 4643-4652.
    [4]
    M. Bausach, M. Pera-Titus, C. Fite, F. Cunill, J.F. Izquierdo, J. Tejero, M. Iborra, AIChE J. 51(2005) 1455-1466.
    [5]
    H. Kikkawa, T. Nakamoto, M. Morishita, K. Yamada, Ind. Eng. Chem. Res. 41(2002) 3028-3036.
    [6]
    D.H. Han, H.Y. Sohn, AIChE J. 48(2002) 2971-2977.
    [7]
    H.Y. Sohn, D.H. Han, AIChE J. 48(2002) 2978-2984.
    [8]
    H.Y. Sohn, D.H. Han, AIChE J. 48(2002) 2985-2991.
    [9]
    T.L. Greaves, C.J. Drummond, Chem. Soc. Rev. 37(2008) 1709-1726.
    [10]
    X.Y. Luo, X.Y. Lv, G.L. Shi, Q. Meng, H.R. Li, C.M. Wang, AIChE J. 65(2019) 230-238.
    [11]
    G. Wang, Z.X. Li, C.S. Li, S.J. Zhang, Green Energy Environ. 4(2019) 293-299.
    [12]
    H. Shimakochi, N. Houfuku, L. Chen, Y. Hisaeda, Green Energy Environ. 4(2019) 116-120.
    [13]
    K. Huang, D.N. Cai, Y.L. Chen, Y.T. Wu, X.B. Hu, Z.B. Zhang, AIChE J. 59(2013) 2227-2235.
    [14]
    L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Nature 399(1999) 28-29.
    [15]
    E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, J. Am. Chem. Soc. 124(2002) 926-927.
    [16]
    M.D. Soutullo, C.I. Odom, B.F. Wicker, C.N. Henderson, A.C. Stenson, J.H. Davis, Chem. Mater. 19(2007) 3581-3583.
    [17]
    Y.Q. Zhang, S.J. Zhang, X.M. Lu, Q. Zhou, W. Fan, X.P. Zhang, Chem. Eur. J. 15(2009) 3003-3011.
    [18]
    Z.Y. Li, R.P. Li, X.Q. Yuan, Y.C. Pei, Y.L. Zhao, H.Y. Wang, J.J. Wang, Green Energy Environ. 4(2019) 131-138.
    [19]
    J.F. Wang, J.Q. Luo, S.C. Feng, H.R. Li, Y.H. Wan, X.P. Zhang, Green Energy Environ. 1(2016) 43-61.
    [20]
    K.Y. Lee, C.S. Kim, H. Kim, M. Cheong, D.K. Mukherjee, K.D. Jung, Bull. Kor. Chem. Soc. 31(2010) 1937-1940.
    [21]
    R.A. Ando, L.J.A. Siqueira, F.C. Bazito, R.M. Torresi, P.S. Santos, J. Phys. Chem. B 111(2007) 8717-8719.
    [22]
    S.H. Ren, Y.C. Hou, W.Z. Wu, Q.Y. Liu, Y.F. Xiao, X.T. Chen, J. Phys. Chem. B 114(2010) 2175-2179.
    [23]
    J. Huang, A. Riisager, P. Wasserscheid, R. Fehrmann, Chem. Commun. 38(2006) 4027-4029.
    [24]
    T.L. Greaves, C.J. Drummond, Chem. Rev. 108(2008) 206-237.
    [25]
    J.L. Anderson, J.K. Dixon, E.J. Maginn, J.F. Brennecke, J. Phys. Chem. B 110(2006) 15059-15062.
    [26]
    S.Y. Hong, J. Im, J. Palgunadi, S.D. Lee, J.S. Lee, H.S. Kim, M. Cheong, K.D. Jung, Energy Environ. Sci. 4(2011) 1802-1806.
    [27]
    W.Z. Wu, B.X. Han, H.X. Gao, Z.M. Liu, T. Jiang, J. Huang, Angew. Chem. Int. Ed. 43(2004) 2415-2417.
    [28]
    S.D. Tian, Y.C. Hou, W.Z. Wu, S.H. Ren, C. Zhang, RSC Adv. 3(2013) 3572-3577.
    [29]
    M.B. Shiflett, A. Yokozeki, Ind. Eng. Chem. Res. 49(2010) 1370-1377.
    [30]
    M.B. Shiflett, A.M.S. Niehaus, A. Yokozeki, J. Chem. Eng. Data 55(2010) 4785-4793.
    [31]
    K.Y. Lee, G.T. Gong, K.H. Son, H. Kim, K.D. Jung, C.S. Kim, Int. J. Hydrogen Energy 33(2008) 6031-6036.
    [32]
    X.L. Yuan, S.J. Zhang, X.M. Lu, J. Chem. Eng. Data 52(2007) 596-599.
    [33]
    A. Sayari, Y. Belmabkhout, J. Am. Chem. Soc. 132(2010) 6312-6132.
    [34]
    C.M. Wang, Y. Guo, X. Zhu, G.K. Cui, H.R. Li, S. Dai, Chem. Commun. 48(2012) 6526-6528.
    [35]
    C.M. Wang, H.M. Luo, X.Y. Luo, H.R. Li, S. Dai, Green Chem. 12(2010) 2019-2023.
    [36]
    D.Z. Yang, M.Q. Hou, H. Ning, J. Ma, X.C. Kang, J.L. Zhang, B.X. Han, ChemSusChem 6(2013) 1191-1195.
    [37]
    K.Y. Lee, H.S. Kim, C.S. Kim, K.D. Jung, Int. J. Hydrogen Energy 35(2010) 10173-10178.
    [38]
    M.J. Jin, Y.C. Hou, W.Z. Wu, S.H. Ren, S.D. Tian, L. Xiao, Z.G. Lei, J. Phys. Chem. B 115(2011) 6585-6591.
    [39]
    C.M. Wang, J.J. Zheng, G.K. Cui, X.Y. Luo, Y. Guo, H.R. Li, Chem. Commun. 49(2013) 1166-1168.
    [40]
    K.H. Chen, W.J. Lin, X.N. Yu, X.Y. Luo, F. Ding, X. He, H.R. Li, C.M. Wang, AIChE J. 61(2015) 2028-2034.
    [41]
    G.K. Cui, F.T. Zhang, X.Y. Zhou, H.R. Li, J.J. Wang, C.M. Wang, Chem. Eur. J. 21(2015) 5632-5639.
    [42]
    G.K. Cui, J.J. Zheng, X.Y. Luo, W.J. Lin, F. Ding, H.R. Li, C.M. Wang, Angew. Chem. Int. Ed. 52(2013) 10620-10624.
    [43]
    C.M. Wang, G.K. Cui, X.Y. Luo, Y.J. Xu, H.R. Li, S. Dai, J. Am. Chem. Soc. 133(2011) 11916-11919.
    [44]
    F.Y. Yan, M. Lartey, K. Damodaran, E. Albenze, R.L. Thompson, J. Kim, M. Haranczyk, H.B. Nulwala, D.R. Luebke, B. Smit, Phys. Chem. Chem. Phys. 15(2013) 3264-3272.
    [45]
    D.S. Firaha, O. Holloczki, B. Kirchner, Angew. Chem. Int. Ed. 54(2015) 7805-7809.
    [46]
    Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120(2008) 215-241.
    [47]
    Y. Wang, P. Verma, X.S. Jin, D.G. Truhlar, X. He, Proc. Natl. Acad. Sci. U. S. A. 115(2018) 10257-10262.
    [48]
    H.R. Tang, C. Wu, ChemSusChem 6(2013) 1050-1056.
    [49]
    H.R. Tang, D.M. Lu, ChemPhysChem 16(2015) 2854-2860.
    [50]
    E.R. Parnham, R.E. Morris, Chem. Mater. 18(2006) 4882-4887.
    [51]
    P. Sharma, S.D. Park, I.H. Baek, K.T. Park, Y.I. Yoon, S.K. Jeong, Fuel Process. Technol. 100(2012) 55-62.
    [52]
    G.K. Cui, W.J. Lin, F. Ding, X.Y. Luo, X. He, H.R. Li, C.M. Wang, Green Chem. 16(2014) 1211-1216.
    [53]
    G.K. Cui, C.M. Wang, J.J. Zheng, Y. Guo, X.Y. Luo, H.R. Li, Chem. Commun. 48(2012) 2633-2635.
    [54]
    K. Huang, G.N. Wang, Y. Dai, Y.T. Wu, X.B. Hu, Z.B. Zhang, RSC Adv. 3(2013) 16264-16269.
    [55]
    K. Huang, Y.L. Chen, X.M. Zhang, S. Xia, Y.T. Wu, X.B. Hu, Chem. Eng. J. 237(2014) 478-486.
    [56]
    S.J. Zeng, H.S. Gao, X.C. Zhang, H.F. Dong, X.P. Zhang, S.J. Zhang, Chem. Eng. J. 251(2014) 248-256.
    [57]
    X.C. Meng, J.Y. Wang, H.C. Jiang, X.J. Zhang, S.L. Liu, Y.Q. Hu, J. Chem. Technol. Biotechnol. 92(2017) 767-774.
    [58]
    G.K. Cui, N. Zhao, Y.N. Li, H.Y. Wang, Y.L. Zhao, Z.Y. Li, J.J. Wang, ACS Sustain. Chem. Eng. 5(2017) 7985-7992.
    [59]
    S.F.R. Taylor, M. McClung, C. McReynolds, H. Daly, A.J. Greer, J. Jacquemin, C. Hardacre, Ind. Eng. Chem. Res. 57(2018) 17033-17042.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return