Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Qiongguang Li, Yanhong Wang, Jing Yu, Menglei Yuan, Qiangqiang Tan, Ziyi Zhong, Fabing Su. High-performance Si-Containing anode materials in lithium-ion batteries: A superstructure of Si@Co-NC composite works effectively. Green Energy&Environment, 2022, 7(1): 116-129. doi: 10.1016/j.gee.2020.08.007
Citation: Qiongguang Li, Yanhong Wang, Jing Yu, Menglei Yuan, Qiangqiang Tan, Ziyi Zhong, Fabing Su. High-performance Si-Containing anode materials in lithium-ion batteries: A superstructure of Si@Co-NC composite works effectively. Green Energy&Environment, 2022, 7(1): 116-129. doi: 10.1016/j.gee.2020.08.007

High-performance Si-Containing anode materials in lithium-ion batteries: A superstructure of Si@Co-NC composite works effectively

doi: 10.1016/j.gee.2020.08.007
  • To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles, we synthesized a superstructure of Si@Co- NC composite via the carbonization of zeolite imidazolate frameworks incorporated with Si nanoparticles. The Si@Co-NC is comprised of Sinanoparticle core and N-doped/Co-incorporated carbon shell, and there is void space between the core and the shell. When using as anode material for LIBs, Si@Co-NC displayed a super performance with a charge/discharge capacity of 191.6/191.4 mA h g-1 and a coulombic efficiency of 100.1% at 1000 mA g-1 after 3000 cycles, and the capacity loss rate is 0.022% per cycle only. The excellent electrochemical property of Si@Co-NC is because its electronic conductivity is enhanced by doping the carbon shell with N atoms and by incorporating with Co particles, and the pathway of lithium ions transmission is shortened by the hollow structure and abundant mesopores in the carbon shell. Also, the volume expansion of Si nanoparticles is well accommodated in the void space and suppressed by the carbon host matrix. This work shows that, through designing a superstructure for the anode materials, we can synergistically reduce the work function and introduce the confinement effect, thus significantly enhancing the anode materials' electrochemical performance in LIBs.

     

  • loading
  • [1]
    H. Wu, Y. Cui, Nano Today 7(2012) 414-429.
    [2]
    Y. Xing, T. Shen, T. Guo, X. Wang, X. Xia, C. Gu, J. Tu, J. Power Sources 384(2018) 207-213.
    [3]
    L. Hu, H. Wu, S. Hong, L. Cui, J.R. Mcdonough, S. Bohy, Y. Cui, Chem. Commun. 47(2011) 367-369.
    [4]
    J. Zhao, Z. Lu, H. Wang, W. Liu, H. Lee, K. Yan, D. Zhuo, D. Lin, N. Liu, Y. Cui, J. Am. Chem. Soc. 137(2015) 8372-8375.
    [5]
    N. Harpak, G. Davidi, D. Schneier, S. Menkin, E. Mados, D. Golodnitsky, E. Peled, F. Patolsky, Nano Lett. 19(2019) 1944-1954.
    [6]
    J. Wang, L. Liao, Y. Li, J. Zhao, F. Shi, K. Yan, A. Pei, G. Chen, G. Li, Z. Lu, Y. Cui, Nano Lett. 18(2018) 7060-7065.
    [7]
    P. Gao, X. Huang, Y. Zhao, X. Hu, D. Cen, G. Gao, Z. Bao, Y. Mei, Z. Di, G. Wu, ACS Nano 12(2018) 11481-11490.
    [8]
    J. Deng, H. Ji, C. Yan, J. Zhang, W. Si, S. Baunack, S. Oswald, Y. Mei, O.G. Schmidt, Angew. Chem. Int. Ed. 52(2013) 2326-2330.
    [9]
    T. Wang, J. Zhu, Y. Chen, H. Yang, Y. Qin, F. Li, Q. Cheng, X. Yu, Z. Xu, B. Lu, J. Mater. Chem. A 5(2017) 4809-4817.
    [10]
    S. Guo, X. Hu, Y. Hou, Z. Wen, ACS Appl. Mater. Interfaces 9(2017) 42084-42092.
    [11]
    J. Wang, Y. Yu, L. Gu, C. Wang, K. Tang, J. Maier, Nanoscale 5(2013) 2647-2650.
    [12]
    F. Zhang, G. Zhu, K. Wang, X. Qian, Y. Zhao, W. Luo, J. Yang, J. Mater. Chem. A 7(2019) 17426-17434.
    [13]
    W. Luo, D. Shen, R. Zhang, B. Zhang, Y. Wang, S. Dou, H. Liu, J. Yang, Adv. Funct. Mater. 26(2016) 7800-7806.
    [14]
    H. Choi, J. Lee, H. Lee, S.W. Kim, C.R. Park, Electrochim. Acta 56(2010) 790-796.
    [15]
    K. Ma, H. Jiang, Y. Hu, C. Li, Adv. Funct. Mater. 28(2018) 1804306.
    [16]
    D. Zuo, S. Song, C. An, L. Tang, Z. He, J. Zheng, Nanomater. Energy 62(2019) 401-409.
    [17]
    G. Zhu, F. Zhang, X. Li, W. Luo, L. Li, H. Zhang, L. Wang, Y. Wang, W. Jiang, H. Liu, S. Dou, J. Yang, Angew. Chem. Int. Ed. 58(2019) 6669-6673.
    [18]
    J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H.K. Liu, S.X. Dou, D. Zhao, Adv. Mater. 29(2017) 1700523.
    [19]
    Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 29(2019) 1809004.
    [20]
    S. Prakash, C. Zhang, J.D. Park, F. Razmjooei, J. Yu, J. Colloid Interface Sci. 534(2019) 47-54.
    [21]
    X. Wang, H. Hao, J. Liu, T. Huang, A. Yu, Electrochim. Acta 56(2011) 4065-4069.
    [22]
    W. Zhang, X. Jiang, X. Wang, Y.V. Kaneti, Y. Chen, J. Liu, J. Jiang, Y. Yamauchi, M. Hu, Angew. Chem. Int. Ed. 56(2017) 8435-8440.
    [23]
    J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 137(2015) 1572-1580.
    [24]
    W. Tian, H. Hu, Y. Wang, P. Li, J. Liu, J. Liu, X. Wang, X. Xu, Z. Li, Q. Zhao, H. Ning, W. Wu, M. Wu, ACS Nano 12(2018) 1990-2000.
    [25]
    G. Lu, S. Li, Z. Guo, O.K. Farha, B.G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J.S. Duchene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S.C. Loo, W.D. Wei, Y. Yang, J.T. Hupp, F. Huo, Nat. Chem. 4(2012) 310-316.
    [26]
    J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 54(2015) 10889-10893.
    [27]
    C. Liu, X. Huang, J. Wang, H. Song, Y. Yang, Y. Liu, J. Li, L. Wang, C. Yu, Adv. Funct. Mater. 28(2018) 1705253.
    [28]
    Y. Zhu, W. Hu, J. Zhou, W. Cai, Y. Lu, J. Liang, X. Li, S. Zhu, Q. Fu, Y. Qian, ACS Appl. Mater. Interfaces 11(2019) 18305-18312.
    [29]
    B. Guan, L. Yu, D. Lou, Adv. Sci. 4(2017) 1700247.
    [30]
    M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, J. Phys. Chem. B 110(2006) 20211-20216.
    [31]
    J. Zhang, J. Wan, J. Wang, H. Ren, R. Yu, L. Gu, Y. Liu, S. Feng, D. Wang, Angew. Chem. Int. Ed. 58(2019) 5266-5271.
    [32]
    D. Potoczna-Petru, L. Kępiński, L. Krajczyk, React. Kinet. Catal. Lett. 97(2009) 321-327.
    [33]
    J. Zhu, J. Yang, Z. Xu, J. Wang, Y. Nuli, X. Zhuang, X. Feng, Nanoscale 9(2017) 8871-8878.
    [34]
    J. Song, L. Wu, W. Dong, C. Li, L. Chen, X. Dai, C. Li, H. Chen, W. Zou, W. Yu, Z. Hu, J. Liu, H. Wang, Y. Li, B. Su, Nanoscale 11(2019) 6970-6981.
    [35]
    F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5(2014) 5261.
    [36]
    J. Jin, Z. Wang, R. Wang, J. Wang, Z. Huang, Y. Ma, H. Li, S. Wei, X. Huang, J. Yan, S. Li, W. Huang, Adv. Funct. Mater. 29(2019) 1807441.
    [37]
    J. Chen, Z. Mao, L. Zhang, D. Wang, R. Xu, L. Bie, B.D. Fahlman, ACS Nano 11(2017) 12650-12657.
    [38]
    M.T. Greiner, L. Chai, M.G. Helander, W. Tang, Z. Lu, Adv. Funct. Mater. 22(2012) 4557-4568.
    [39]
    X. Wang, H. Xue, Z. Na, D. Yin, Q. Li, C. Wang, L. Wang, G. Huang, J. Power Sources 396(2018) 659-666.
    [40]
    S. Lee, U. Kim, J. Chung, H. Nam, H. Jeong, G. Han, H. Kim, H. Oh, H. Lee, H. Kim, Y.G. Roh, J. Kim, S. Hwang, Y. Park, Y. Lee, ACS Nano 10(2016) 6100-6107.
    [41]
    L. Sygellou, G. Paterakis, C. Galiotis, D. Tasis, J. Phys. Chem. C 120(2015) 281-290.
    [42]
    H. Yuan, S. Chang, I. Bargatin, N. Wang, D.C. Riley, H. Wang, J.W. Schwede, J. Provine, E. Pop, Z. Shen, P.A. Pianetta, N.A. Melosh, R.T. Howe, Nano Lett. 15(2015) 6475-6480.
    [43]
    K.T. Narasimha, C. Ge, J.D. Fabbri, W. Clay, B.A. Tkachenko, A.A. Fokin, P.R. Schreiner, J.E. Dahl, R.M. Carlson, Z. Shen, N.A. Melosh, Nat. Nanotechnol. 11(2016) 267-272.
    [44]
    T. Schultz, R. Schlesinger, J. Niederhausen, F. Henneberger, S. Sadofev, S. Blumstengel, A. Vollmer, F. Bussolotti, J.P. Yang, S. Kera, K. Parvez, N. Ueno, K. Müllen, N. Koch, Phys. Rev. B 93(2016) 125309.
    [45]
    Y. Ma, C. Shen, A. Zhang, L. Chen, Y. Liu, J. Chen, Q. Liu, Z. Li, M.R. Amer, T. Nilges, A.N. Abbas, C. Zhou, ACS Nano 11(2017) 7126-7133.
    [46]
    S.P.V. Nadimpalli, V.A. Sethuraman, S. Dalavi, B. Lucht, M.J. Chon, V.B. Shenoy, P.R. Guduru, J. Power Sources 215(2012) 145-151.
    [47]
    L. Guo, Y. Ding, C. Qin, W. Li, J. Du, Z. Fu, W. Song, F. Wang, Electrochim. Acta 187(2016) 234-242.
    [48]
    N.A. Kaskhedikar, J. Maier, Adv. Mater. 21(2009) 2664-2680.
    [49]
    D. Choi, J. Kang, J. Park, B. Han, Phys. Chem. Chem. Phys. 20(2018) 11592-11597.
    [50]
    X. Yi, W. Yu, M.A. Tsiamtsouri, F. Zhang, W. He, Q. Dai, S. Hu, H. Tong, J. Zheng, B. Zhang, J. Liao, Electrochim. Acta 295(2019) 719-725.
    [51]
    Z. Cai, Z. Wang, J. Kim, Y. Yamauchi, Adv. Mater. 31(2019) e1804903.
    [52]
    J. Lee, J. Moon, S. Han, J. Kim, V. Malgras, Y. Heo, H. Kim, S. Lee, H. Liu, S. Dou, Y. Yamauchi, M.S. Park, J.H. Kim, ACS Nano 13(2019) 9607-9619.
    [53]
    H. Tao, L. Fan, W. Song, M. Wu, X. He, X. Qu, Nanoscale 6(2014) 3138-3142.
    [54]
    L. Zhang, M. Zhang, Y. Wang, Z. Zhang, G. Kan, C. Wang, Z. Zhong, F. Su, J. Mater. Chem. A 2(2014) 10161-10168.
    [55]
    W. Li, X. Sun, Y. Yu, Small Methods 1(2017) 1600037.
    [56]
    M.K. Majeed, G. Ma, Y. Cao, H. Mao, X. Ma, W. Ma, Chem. Eur. J. 25(2019) 1-8.
    [57]
    T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, L. Giebeler, Phys. Chem. Chem. Phys. 17(2015) 24956-24967.
    [58]
    J. Li, N.J. Dudney, J. Nanda, C. Liang, ACS Appl. Mater. Interfaces 6(2014) 10083-10088.
    [59]
    C. Wang, H. Wu, Z. Chen, M.T. Mcdowell, Y. Cui, Z. Bao, Nat. Chem. 5(2013) 1042-1048.
    [60]
    J. Lee, Y. Ko, M. Shin, H. Song, N. Choi, M. Kim, S. Park, Energy Environ. Sci. 8(2015) 2075-2084.
    [61]
    X. Li, C. Yan, J. Wang, A. Graff, S.L. Schweizer, A. Sprafke, O.G. Schmidt, R.B. Wehrspohn, Adv. Energy Mater. 5(2015) 1401556.
    [62]
    E. Peled, F. Patolsky, D. Golodnitsky, K. Freedman, G. Davidi, D. Schneier, Nano Lett. 15(2015) 3907-3916.
    [63]
    H. Tian, X. Tan, F. Xin, C. Wang, W. Han, Nanomater. Energy 11(2015) 490-499.
    [64]
    Y. Xu, Y. Zhu, F. Han, C. Luo, C. Wang, Adv. Energy Mater. 5(2015) 1400753.
    [65]
    S. Chae, M. Ko, S. Park, N. Kim, J. Ma, J. Cho, Energy Environ. Sci. 9(2016) 1251-1257.
    [66]
    S. Chen, L. Shen, P.A. van Aken, J. Maier, Y. Yu, Adv. Mater. 29(2017) 1605650.
    [67]
    S. Lawes, Q. Sun, A. Lushington, B. Xiao, Y. Liu, X. Sun, Nanomater. Energy 36(2017) 313-321.
    [68]
    Y. Yuan, W. Xiao, Z. Wang, D.J. Fray, X. Jin, Angew. Chem. Int. Ed. 57(2018) 15743-15748.
    [69]
    Y. Cho, J. Kim, A. Elabd, S. Choi, K. Park, T.W. Kwon, J. Lee, K. Char, A. Coskun, J.W. Choi, Adv. Mater. 31(2019) 1905048.
    [70]
    W. Chang, S. Kim, J. Hwang, J. Chang, D. Yang, S.S. Kwon, J.T. Kim, W.W. Lee, J.H. Lee, H. Park, T. Song, I.H. Lee, D. Whang, W. Il Park, Nat. Commun. 9(2018) 3461.
    [71]
    T. Yoon, M.S. Milien, B.S. Parimalam, B.L. Lucht, Chem. Mater. 29(2017) 3237-3245.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (171) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return