Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Yanyan Yu, Huanghui Xu, Hongfei Yu, Lihong Hu, Yun Liu. Formic acid fractionation towards highly efficient cellulose-derived PdAg bimetallic catalyst for H2 evolution. Green Energy&Environment, 2022, 7(1): 172-183. doi: 10.1016/j.gee.2020.08.006
Citation: Yanyan Yu, Huanghui Xu, Hongfei Yu, Lihong Hu, Yun Liu. Formic acid fractionation towards highly efficient cellulose-derived PdAg bimetallic catalyst for H2 evolution. Green Energy&Environment, 2022, 7(1): 172-183. doi: 10.1016/j.gee.2020.08.006

Formic acid fractionation towards highly efficient cellulose-derived PdAg bimetallic catalyst for H2 evolution

doi: 10.1016/j.gee.2020.08.006
  • The present work, in which cellulose isolated from formic acid fractionation (FAC) is decorated with polyetherimide (PEI) to attain highly efficient cellulose-derived PdAgbimetallic catalyst (PdAg-PEI-FAC), has been investigated, and the catalyst properties are characterized by XRD, XPS, BET, ICP-AES and HAADF-STEM. The as-obtained Pd3.75Ag3.75-PEI-FAC exhibits excellent catalytic performance for H2 evolution from a sodium formate-free formic acid (FA) aqueous medium at ambient temperature and the turnover frequency (TOF) reaches a high value of 2875 h-1, which is superior to most of the previously reported Pd-based heterogeneous catalysts supported on a carbon matrix in the literature. The remarkable catalytic activities of PdAg-PEI-FAC result from high dispersion Pd and synergistic effects between the PdAg bimetallic system. Furthermore, the amide (-NH) group in PEI coated on cellulose acting as a proton scavenger efficiently improves the catalytic property of catalyst. In addition, the critical factors affecting H2 release, such as FA concentration, reaction temperature, PdAg compositions and support matrix type, are also evaluated. Based on the experimental results, the probable three-step mechanism of H2 evolution from FA over Pd3.75Ag3.75-PEI-FAC is proposed. In the end, the activation energy (Ea) of Pd3.75Ag3.75-PEI-FAC catalyst is calculated to 53.97 kJ mol-1, and this catalyst shows unique robustness and satisfactory re-usability with no loss of catalytic activity after five recycles. The findings in this work provide a novel routine from lignocellulose fractionation towards cellulose-derived catalyst for H2 evolution.

     

  • These authors are equal contributor to this work.
  • loading
  • [1]
    X. Ren, D. Li, D. Xu, B. Hu, Int. J. Hydrogen Energy 45(2020) 34326-34345.
    [2]
    H. Zhong, M. Iguchi, M. Chatterjee, Y. Himeda, Q. Xu, H. Kawanami, Adv. Sustain. Syst. 2(2018) 1700161.
    [3]
    X. Qin, H. Li, S. Xie, K. Li, T. Jiang, X.-Y. Ma, K. Jiang, Q. Zhang, O. Terasaki, Z. Wu, W.-B. Cai, ACS Catal. 10(2020) 3921-3932.
    [4]
    Z. Yu, X. An, I. Kurnia, A. Yoshida, Y. Yang, X. Hao, A. Abudula, Y. Fang, G. Guan, ACS Catal. 10(2020) 5353-5361.
    [5]
    M. Navlani-García, K. Mori, D. Salinas-Torres, Y. Kuwahara, H. Yamashita, Front. Mater. 12(2019) 4027.
    [6]
    Y. Huang, J. Xu, X. Ma, Y. Huang, Q. Li, H. Qiu, Int. J. Hydrogen Energy 42(2017) 18375-18382.
    [7]
    Z. Wang, C. Wang, S. Mao, Y. Gong, Y. Chen, Y. Wang, J. Mater. Chem. A 7(2019) 25791-25795.
    [8]
    B. Yin, E. Zhao, X. Hua, K. Wang, W. Wang, G. Li, T. Liu, New J. Chem. 44(2020) 2011-2015.
    [9]
    S. n Hu, F. Munoz, J. Noborikaw, J. Haan, L. Scudiero, S. Ha, Appl. Catal. B Environ. 180(2016) 758-765.
    [10]
    M. Yurderi, A. Bulut, M. Zahmakiran, M. Kaya, Appl. Catal. B Environ. 160-161(2014) 514-524.
    [11]
    L. Yang, W. Luo, G. Cheng, Int. J. Hydrogen Energy 41(2016) 439-446.
    [12]
    M. Yadav, T. Akita, N. Tsumori, Q. Xu, J. Mater. Chem. 22(2012) 12582-12586.
    [13]
    K. Tedsree, T. Li, S. Jones, C.W.A. Chan, K.M.K. Yu, P.A.J. Bagot, E.A. Marquis, G.D.W. Smith, S.C.E. Tsang, Nat. Nanotechnol. 6(2011) 302-307.
    [14]
    Q.-L. Zhu, N. Tsumori, Q. Xu, Chem. Sci. 5(2014) 195-199.
    [15]
    F.-Z. Song, Q.-L. Zhu, X. Yang, W.-W. Zhan, P. Pachfule, N. Tsumori, Q. Xu, Adv. Energy Mater. 8(2018) 1770139.
    [16]
    W. Wang, T. He, X. Liu, W. He, H. Cong, Y. Shen, et al., ACS Appl. Mater. Interfaces 8(2016) 20839-20848.
    [17]
    M.-H. Jin, D. Oh, J.-H. Park, C.-B. Lee, S.-W. Lee, J.-S. Park, K.-Y. Lee, D.-W. Lee, Sci. Rep. 6(2016) 33502.
    [18]
    Y. Liu, L. Guo, L. Wang, W. Zhan, H. Zhou, Bioresour. Technol. 232(2017) 270-277.
    [19]
    F. Valentini, V. Kozell, C. Petrucci, A. Marrocchi, Y. Gu, D. Gelman, L. Vaccaro, Energy Environ. Sci. 12(2019) 2646-2664.
    [20]
    M. Zhang, W. Qi, R. Liu, R. Su, S. Wu, Z. He, Biomass Bioenergy 34(2010) 525-532.
    [21]
    H. Zhou, L. Tan, Y. Fu, H. Zhang, N. Liu, Z. Wang, M. Qin, ChemSusChem 12(2019) 1213-1221.
    [22]
    M.F. Li, S.N. Sun, F. Xu, R.C. Sun, Chem. Eng. J. 179(2012) 80-89.
    [23]
    J.X. Sun, X.F. Sun, R.C. Sun, P. Fowler, M.S. Baird, J. Agric. Food Chem. 51(2003) 6719-6725.
    [24]
    (a) Y. Zhu, Z. Li, J. Chen, Green Energy Environ. 4(2019) 210-244; (b) H. Zhou, H. Xu, X. Wang, Y. Liu, Green Chem. 21(2019) 2923-2927; (c) H. Zhou, H. Xu, Y. Liu, Appl. Catal. B Environ. 244(2019) 965-973; (d) H. Zhou, S. Hong, H. Zhang, Y. Chen, H. Xu, X. Wang, Z. Jiang, S. Chen, Y. Liu, Appl. Catal. B-Environ. 256(2019) 117767.
    [25]
    H. Zhou, R. Zhang, W. Zhan, L. Wang, L. Guo, Y. Liu, Green Chem. 18(2016) 6108-6114.
    [26]
    W. Guo, H.J. Heeres, J. Yue, Chem. Eng. J. 381(2020) 122754.
    [27]
    E.I. Gürbüz, J.M.R. Gallo, D.M. Alonso, S.G. Wettstein, W.Y. Lim, J.A. Dumesic, Angew. Chem. Int. Ed. 52(2013) 1270-1274.
    [28]
    Y. Zhang, X. He, J. Ouyang, Sci. Rep. 3(2013) 2948-2953.
    [29]
    (a) Y. Wang, B. Wang, L. Ling, R. Zhang, M. Fan, Chem. Eng. Sci. 218(2020) 115549; (b) N.-G. Miriam, S.-T. David, C.-A. Diego, Energies 12(2019) 4027; (c) X. Qin, H. Li, S. Xie, K. Li, T. Jiang, X. Ma, K. Jiang, Q. Zhang, O. Terasaki, Z. Wu, W. Cai, ACS Catal. 10(2020) 3921-3932.
    [30]
    H. Zhang, X. Li, G. Chen, J. Mater. Chem. 19(2009) 8223-8231.
    [31]
    (a) H. Zhou, L. Wang, Y. Liu, Biotechnol. Biofuels 11(2018) 109; (b) R. Zhang, Y. Liu, Sci. Rep. 8(2018) 1-19; (c) W. Jia, Y. Liu, Cellulose 26(2019) 8351-8365.
    [32]
    X. Zhang, N. Shang, H. Shang, R. Tang. T Du, C. Feng, S. Gao, C. Wang, Z. Wang, Energy Technol. 7(2018) 140-145.
    [33]
    (a) X. Zhou, Y. Huang, C. Liu, J. Liao, T. Lu, W. Xing, ChemSusChem 3(2010) 1379-1382; (b) X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao, T. Lu, Chem. Commun. 30(2008) 3540-3542.
    [34]
    C. Feng, Y. Wang, S. Gao, N. Shang, C. Wang, Catal. Commun. 78(2016) 17-21.
    [35]
    M.R. Nabid, Y. Bide, B. Etemadi, New J. Chem. 41(2017) 10773-10779.
    [36]
    H. Liu, X. Liu, W. Yang, M. Shen, S. Geng, C. Yu, B. Shen, Y. Yu, J. Mater. Chem. A 7(2019) 2022-2026.
    [37]
    L. Yang, X. Hua, J. Su, W. Luo, S. Chen, G. Cheng, Appl. Catal. B Environ. 168(2015) 423-428.
    [38]
    S. Masuda, K. Mori, Y. Futamura, H. Yamashita, ACS Catal. 8(2018) 2277-2285.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (208) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return