Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Hongmin Zhang, Qingzhu Jia, Fangyou Yan, Qiang Wang. Heterogeneous activation of persulfate by CuMgAl layered double oxide for catalytic degradation of sulfameter. Green Energy&Environment, 2022, 7(1): 105-115. doi: 10.1016/j.gee.2020.08.005
Citation: Hongmin Zhang, Qingzhu Jia, Fangyou Yan, Qiang Wang. Heterogeneous activation of persulfate by CuMgAl layered double oxide for catalytic degradation of sulfameter. Green Energy&Environment, 2022, 7(1): 105-115. doi: 10.1016/j.gee.2020.08.005

Heterogeneous activation of persulfate by CuMgAl layered double oxide for catalytic degradation of sulfameter

doi: 10.1016/j.gee.2020.08.005
  • In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hydroxides (CuMgAl-LDHs) synthesised via a co-precipitation method. The results show that CuMgAl-LDO can be prepared using an optimal Cu:Mg:Al molar ratio of 3:3:2, NaOH:Na2CO3 molar ratio of 2:1, and calcination temperature of 600℃. CuMgAl-LDO is a characteristic of mesoporous material with a lamellar structure and large specific surface area. The removal efficiency of sulfameter (SMD) based on CuMgAl-LDO/persulfate (PS) can reach > 98% over a wide range of initial SMD concentrations (5-20 mg L-1). The best removal efficiency of 99.49% was achieved within 120 min using 10 mg L-1 SMD, 0.3 g L-1 CuMgAl-LDO, and 0.7 mmol L-1 PS. Kinetic analysis showed that the degradation of SMD was in accordance with a quasi-first-order kinetic model. The stability of the CuMgAl-LDO catalyst was verified by the high SMD removal efficiency (> 97% within 120 min) observed after five recycling tests and low copper ion leaching concentration (0.89 mg L-1), which is below drinking water quality standard of 1.3 mg L-1 permittable in the U.S. Radical scavenging experiments suggest that SO4·- is the primary active species participating in the CuMgAl-LDO/PS system. Moreover, our mechanistic investigations based on the radical scavenging tests and X-ray photoelectron spectroscopy (XPS) results indicate that Cu(II)-Cu(III)-Cu(II) circulation is responsible for activating PS in the degradation of SMD and the degradation pathway for SMD was deduced. Accordingly, the results presented in this work demonstrate that CuMgAl-LDO may be an efficient and stable catalyst for the activation of PS during the degradation of organic pollutants.

     

  • loading
  • [1]
    Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Environ. Sci. Technol. 49(2015) 6772-6782.
    [2]
    P. Gao, D. Mao, Y. Luo, L. Wang, B. Xu, L. Xu, Water Res. 46(2012) 2355-2364.
    [3]
    A.M. Ibekwe, J. Ma, S. Murinda, G.B. Reddy, Sci. Total Environ. 544(2016) 68-76.
    [4]
    M. Qiao, G.G. Ying, A.C. Singer, Y.G. Zhu, Environ. Int. 110(2018) 160-172.
    [5]
    L. Bing, Z. Tong, Environ. Sci. Technol. 44(2010) 3468-3473.
    [6]
    S. Pan, J. Li, O. Noonan, X. Fang, G. Wan, C. Yu, L. Wang, Environ. Sci. Technol. 51(2017) 5098.
    [7]
    J.J. Pignatello, E. Oliveros, A. Mackay, Crit. Rev. Environ. Sci. Technol. 36(2006) 1-84.
    [8]
    J. Wang, Z. Bai, Chem. Eng. J. 312(2017) 79-98.
    [9]
    S. Jiao, Y. Zhao, C. Li, B. Wang, Y. Qu, Green Energy Environ. 4(2019) 66-74.
    [10]
    G. Fang, W. Wu, C. Liu, D.D. Dionysiou, Y. Deng, D. Zhou, Appl. Catal. B Environ. 202(2017) 1-11.
    [11]
    C.K.O.D. Silva-Rackov, W.A. Lawal, P.A. Nfodzo, M.M.G.R. Vianna, C.a.O.D. Nascimento, H. Choi, Appl. Catal. B Environ. 192(2016) 253-259.
    [12]
    P. Hu, M. Long, Appl. Catal. B Environ. 181(2016) 103-117.
    [13]
    X. Duan, C. Su, L. Zhou, H. Sun, A. Suvorova, T. Odedairo, Z. Zhu, Z. Shao, S. Wang, Appl. Catal. B Environ. 194(2016) 7-15.
    [14]
    L.W. Matzek, K.E. Carter, Chemosphere 151(2016) 178-188.
    [15]
    Y. Gao, Z. Zhang, S. Li, L. Jin, L. Yao, Y. Li, Z. Hui, Appl. Catal. B Environ. 185(2016) 22-30.
    [16]
    C.S. Liu, K. Shih, C.X. Sun, F. Wang, Sci. Total Environ. 416(2012) 507-512.
    [17]
    Y. Lei, C.S. Chen, Y.J. Tu, L. Yang, C. Chuh-Shun, T. Yao-Jen, H. YaoHui, Z. Hui, Environ. Sci. Technol. 49(2015) 6838-6845.
    [18]
    A. Jawad, J. Lang, Z.W. Liao, A. Khan, J. Ifthikar, Z. Lv, S. Long, Z. Chen, Z. Chen, Chem. Eng. J. 335(2018) 548-559.
    [19]
    S. Park, D. Kwon, J.Y. Kang, J.C. Jung, Green Energy Environ. 4(2019) 287-292.
    [20]
    W. Huo, T. Cao, X. Liu, W. Xu, B. Dong, Y. Zhang, F. Dong, Green Energy Environ. 4(2019) 270-277.
    [21]
    Y. Chen, J.C. Yan, O.Y. Da, L. Qian, H. Lu, M. Chen, Appl. Catal. A 538(2017) 19-26.
    [22]
    Y.C. Hong, J.L. Peng, X.G. Zhao, Y. Yan, B. Lai, G. Yao, Chem. Eng. J. 370(2019) 354-363.
    [23]
    M. Chen, P. Wu, Z. Huang, J. Liu, Y. Li, N. Zhu, Z. Dang, Y. Bi, J. Environ. Manag. 246(2019) 164-173.
    [24]
    D. Ngo, T. Sooknoi, D. Resasco, Appl. Catal. B Environ. 237(2018) 835-843.
    [25]
    C.P. Ji, J. Kim, H. Kwon, H. Song, Adv. Mater. 40(2009) 803-807.
    [26]
    Y.F. Ji, C.X. Dong, D.Y. Kong, J. Lu, J. Hazard Mater. 285(2015) 491-500.
    [27]
    H. Latiff, M. Kishimoto, S. Sharmin, E. Kita, H. Yanagihara, T. Nakagawa, IEEE Trans. Magn. 53(2017) 1-4.
    [28]
    F. Li, X. Duan, ChemInform 37(2006) 193-223.
    [29]
    J. Deng, Y. Shao, N. Gao, C. Tan, S. Zhou, X. Hu, J. Hazard Mater. 262(2013) 836-844.
    [30]
    G. Xian, G. Zhang, H. Chang, Y. Zhang, Z. Zou, X. Li, J. Environ. Manag. 234(2019) 265-272.
    [31]
    Z.J. Huang, P.X. Wu, B.N. Gong, E. Al, J. Mater. Chem. A 2(2014) 5534-5540.
    [32]
    Y. Qi, Z. Yu, X.M. Li, L. Xin, K. Luo, X. Wu, H. Chen, L. Yang, G. Zeng, J. Ind. Eng. Chem. 28(2015) 54-59.
    [33]
    Y. Feng, J.H. Liu, D.L. Wu, Z. Zhou, Y. Deng, T. Zhang, K. Shih, Chem. Eng. J. 280(2015) 514-524.
    [34]
    X. Zou, Z. Tao, J. Mao, X. Wu, Chem. Eng. J. 257(2014) 36-44.
    [35]
    C. Gong, F. Chen, Q. Yang, K. Luo, F. Yao, S. Wang, X. Wang, J. Wu, X. Li, D. Wang, G. Zeng, Chem. Eng. J. 321(2017) 222-232.
    [36]
    J. Yan, Y. Chen, L. Qian, W. Gao, D. Ouyang, M. Chen, J. Hazard Mater. 338(2017) 372.
    [37]
    H. Liang, Y. Zhang, S. Huang, I. Hussain, Chem. Eng. J. 218(2013) 384-391.
    [38]
    J.M. Monteagudo, A. Durán, R. González, A.J. Expósito, Appl. Catal. B Environ. 176-177(2015) 120-129.
    [39]
    X.F. Zhao, C.G. Niu, L. Zhang, H. Guo, X. Wen, C. Liang, G. Zeng, Chemosphere 204(2018) 11-21.
    [40]
    S.K. Ling, S. Wang, Y. Peng, J. Hazard Mater. 178(2010) 385-389.
    [41]
    R.R. Shan, L.G. Yan, K. Yang, Y.F. Hao, B. Du, J. Hazard Mater. 299(2015) 42-49.
    [42]
    C.S. Lei, X.F. Zhu, B.C. Zhu, C. Jiang, Y. Le, J. Yu, J. Hazard Mater. 321(2017) 801-811.
    [43]
    M.T. Hasan, B.J. Senger, C. Ryan, M. Culp, R. Gonzalezrodriguez, J.L. Coffer, A.V. Naumov, Sci. Rep. 7(2017) 6411.
    [44]
    G. Fan, F. Li, D.G. Evans, X. Duan, Chem. Soc. Rev. 45(2015) 7040-7066.
    [45]
    W.X. Qin, G.D. Fang, Y.J. Wang, D. Zhou, Chem. Eng. J. 348(2018) 526-534.
    [46]
    F. Ji, C.L. Li, X.Y. Wei, Y.U. Jie, Chem. Eng. J. 231(2013) 434-440.
    [47]
    Y.B. Wang, H.Y. Zhao, M.F. Li, J. Fan, G. Zhao, Appl. Catal. B Environ. 147(2014) 534-545.
    [48]
    H. Lu, M. Sui, B. Yuan, J. Wang, Y. Lv, Chem. Eng. J. 357(2019) 140-149.
    [49]
    Y. Li, L. Guo, D. Huang, A. Jawad, Z. Chen, J. Yang, W. Liu, Y. Shen, M. Wang, G. Yin, J. Hazard Mater. 328(2017) 56-62.
    [50]
    J. Yao, X. Zeng, Z. Wang, J. Yao, X. Zeng, Z. Wang, J. Yao, X. Zeng, Z. Wang, Chem. Eng. J. 330(2017) 345-354.
    [51]
    Y. Zhang, Z. Qian, J. Hong, Appl. Surf. Sci. 422(2017) 443-451.
    [52]
    Y. Ma, F. Chen, Q. Yang, Y. Zhong, X. Shu, F. Yao, T. Xie, X. Li, D. Wang, G. Zeng, J. Environ. Manag. 227(2018) 406-414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (257) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return