Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Ragne Marie Lilleby Helberg, Jonathan Ø. Torstensen, Zhongde Dai, Saravanan Janakiram, Gary Chinga-Carrasco, Øyvind W. Gregersen, Kristin Syverud, Liyuan Deng. Nanocomposite membranes with high-charge and size-screened phosphorylated nanocellulose fibrils for CO2 separation. Green Energy&Environment, 2021, 6(4): 585-596. doi: 10.1016/j.gee.2020.08.004
Citation: Ragne Marie Lilleby Helberg, Jonathan Ø. Torstensen, Zhongde Dai, Saravanan Janakiram, Gary Chinga-Carrasco, Øyvind W. Gregersen, Kristin Syverud, Liyuan Deng. Nanocomposite membranes with high-charge and size-screened phosphorylated nanocellulose fibrils for CO2 separation. Green Energy&Environment, 2021, 6(4): 585-596. doi: 10.1016/j.gee.2020.08.004

Nanocomposite membranes with high-charge and size-screened phosphorylated nanocellulose fibrils for CO2 separation

doi: 10.1016/j.gee.2020.08.004
  • In this study, cellulose nanofibrils (CNF) of high charge (H-P-CNF) and screened size (H-P-CNF-S) were fabricated by increasing the charge of phosphorylated cellulose nanofibrils (P-CNFs) during the pre-treatment step of CNF production. Results show that the H-P-CNF have a significantly higher charge (3.41 mmol g-1) compared with P-CNF (1.86 mmol g-1). Centrifugation of H-P-CNF gave a supernatant with higher charge (5.4 mmol g-1) and a reduced size (H-P-CNF-S). These tailored nanocelluloses were added to polyvinyl alcohol (PVA) solutions and the suspensions were successfully coated on porous polysulfone (PSf) supports to produce thin-film nanocomposite membranes. The humid mixed gas permeation tests show that CO2 permeability increases for membranes with the addition of H-P-CNF-S by 52% and 160%, compared with the P-CNF/PVA membrane and neat PVA membrane, respectively.

     

  • loading
  • [1]
    J. Hansen, M. Sato, P. Hearty, R. Ruedy, M. Kelley, V. Masson-Delmotte, G. Russell, G. Tselioudis, J. Cao, E. Rignot, I. Velicogna, B. Tormey, B. Donovan, E. Kandiano, K. Von schuckmann, P. Kharecha, A.N. Legrande, M. Bauer, K.W. Lo, Atmos. Chem. Phys. 16(2016) 3761-3812.
    [2]
    M. Tong, Y. Lan, Q. Yang, C. Zhong, Green Energy Environ. 3(2018) 107-119.
    [3]
    R.K. Pachauri, M. Allen, V. Barros, J. Broome, W. Cramer, R. Christ, J. Church, L. Clarke, Q. Dahe, P. Dasgupta, Climate Change 2014:Synthesis Report, IPCC, Geneva, Switzerland, 2014, pp. 151-165.
    [4]
    H.K. Knuutila, R. Rennemo, A.F. Ciftja, Green Energy Environ. 4(2019) 439-452.
    [5]
    R.W. Baker, B.T. Low, Macromolecules 47(2014) 6999-7013.
    [6]
    P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res. 48(2009) 4638-4663.
    [7]
    T.C. Merkel, H. Lin, X. Wei, R. Baker, J. Membr. Sci. 359(2010) 126-139.
    [8]
    L. Ansaloni, J. Salas-Gay, S. Ligi, M.G. Baschetti, J. Membr. Sci. 522(2017) 216-225.
    [9]
    D. Venturi, D. Grupkovic, L. Sisti, M.G. Baschetti, J. Membr. Sci. 548(2018) 263-274.
    [10]
    Z. Dai, J. Deng, Q. Yu, R.M.L. Helberg, S. Janakiram, L. Ansaloni, L. Deng, ACS Appl. Mater. Interfaces 11(2019) 10874-10882.
    [11]
    J.Ø. Torstensen, R.M.L. Helberg, L. Deng, Ø.W. Gregersen, K. Syverud, Int. J. Greenhouse Gas Control 81(2019) 93-102.
    [12]
    S. Janakiram, X. Yu, L. Ansaloni, Z. Dai, L. Deng, ACS Appl. Mater. Interfaces 11(2019) 33302-33313.
    [13]
    A. Dufresne, Curr. Opin. Colloid Interface Sci. 29(2017) 1-8.
    [14]
    C. Liu, H. Du, L. Dong, X. Wang, Y. Zhang, G. Yu, B. Li, X. Mu, H. Peng, H. Liu, Ind. Eng. Chem. Res. 56(2017) 8264-8273.
    [15]
    A. Dufresne, Nanocellulose:From Nature to High Performance Tailored Materials, De Gruyter, Berlin, 2012.
    [16]
    R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40(2011) 3941-3994.
    [17]
    D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. 50(2011) 5438-5466.
    [18]
    Z. Jahan, M.B.K. Niazi, M.-B. Hägg, Ø.W. Gregersen, J. Membr. Sci. 554(2018) 275-281.
    [19]
    Z. Jahan, M.B.K. Niazi, M.-B. Hagg, Ø.W. Gregersen, A. Hussain, Separ. Sci. Technol. (2019) 1-11.
    [20]
    Z. Dai, V. Ottesen, J. Deng, R.M.L. Helberg, L. Deng, Fibers 7(2019) 40.
    [21]
    J.Ø. Torstensen, M. Liu, S.-A. Jin, L. Deng, A.I. Hawari, K. Syverud, R.J. Spontak, Ø.W. Gregersen, Biomacromolecules 19(2018) 1016-1025.
    [22]
    M. Ghanadpour, F. Carosio, P.T. Larsson, L. Wågberg, Biomacromolecules 16(2015) 3399-3410.
    [23]
    M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindström, Eur. Polym. J. 43(2007) 3434-3441.
    [24]
    T. Saito, A. Isogai, Biomacromolecules 5(2004) 1983-1989.
    [25]
    G. Chinga-Carrasco, Micron 48(2013) 42-48.
    [26]
    G. Chinga-Carrasco, N. Averianova, O. Kondalenko, M. Garaeva, V. Petrov, B. Leinsvang, T. Karlsen, Micron 56(2014) 80-84.
    [27]
    J. Colson, W. Bauer, M. Mayr, W. Fischer, W. Gindl-Altmutter, Cellulose 23(2016) 2439-2448.
    [28]
    R.M. Lilleby Helberg, Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 5(2020) 59-68.
    [29]
    Z. Dai, L. Ansaloni, D.L. Gin, R.D. Noble, L. Deng, J. Membr. Sci. 523(2017) 551-560.
    [30]
    Z.H. Ping, Q.T. Nguyen, J. Néel, Makromol. Chem. 190(1989) 437-448.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (157) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return