Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Fulong Zhu, Mingyuan Zhu, Lihua Kang. B-doped activated carbon as a support for a high-performance Zn-based catalyst in acetylene acetoxylation. Green Energy&Environment, 2022, 7(2): 221-228. doi: 10.1016/j.gee.2020.07.027
Citation: Fulong Zhu, Mingyuan Zhu, Lihua Kang. B-doped activated carbon as a support for a high-performance Zn-based catalyst in acetylene acetoxylation. Green Energy&Environment, 2022, 7(2): 221-228. doi: 10.1016/j.gee.2020.07.027

B-doped activated carbon as a support for a high-performance Zn-based catalyst in acetylene acetoxylation

doi: 10.1016/j.gee.2020.07.027
  • A series of boron-doped (B-doped) catalysts with dissimilar mass ratios of boric acid and activated carbon (AC) were prepared by an impregnation method for acetylene acetoxylation. The introduction of a number of boron atoms activates the stable π electrons in AC, which not only enhances the electron transfer between Zn and the reactants, but also improves the adsorption ability of CH3COOH. Improving the conversion rate of CH3COOH from 50% to 65% effectively. The inductively coupled plasma (ICP) analysis confirmed the content of zinc approximately 7.3 wt% for both Zn/AC and Zn/0.02 B-AC-900 catalysts. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the introduction of boron changed the electron cloud density of Zn, and the strength of the Zn–O (from CH3COOH) bond was increased. In addition, temperature-programmed desorption (TPD) analysis revealed that the Zn/0.02 B-AC-900 catalyst enhanced the adsorption of CH3COOH and reduced the adsorption of C2H2, thus the conversion rate of CH3COOH was increased.

     

  • loading
  • [1]
    B. Xing, Z. Wei, G. Wang, J. Energy Chem. 4(2013) 138-146.
    [2]
    M.M. Pohl, J. Radnik, M. Schneider, U. Bentrup, D. Linke, A. Brückner, J. Catal. 262(2009) 314-323.
    [3]
    H. Schobert, Chem. Rev. 114(2014) 1743-1760.
    [4]
    M. Neurock, W.T. Tysoe, Top. Catal. 61(2018) 722-735.
    [5]
    F.W. Yan, C.Y. Guo, F. Yan, F.B. Li, Q.L. Qian, G.Q. Yuan, Russ. J. Phys. Chem. 84(2010) 796-780.
    [6]
    B.A. Morrow, J. Catal. 86(1984) 328-332.
    [7]
    H. Xu, T.L. Yu, M. Li, J. Chem. 2015(2015) 1-5.
    [8]
    X.Y. Wu, P.J. He, X.G. Wang, B. Dai, Chem. Eng. J. 309(2017) 172-177.
    [9]
    P.J. He, L.H. Huang, X.Y. Wu, Z. Xu, M.Y. Zhu, X.G. Wang, Catalysts 8(2018) 239-249.
    [10]
    R. Krishnan, S.Y. Wu, H.T. Chen, Phys. Chem. Chem. Phys. 20(2018) 26414-26421.
    [11]
    R.R. Li, J. Zhao, D. Han, X.N. Li, Catal. Commun. 97(2017) 116-119.
    [12]
    X.C. Zhao, A.Q. Wang, J.W. Yan, G.Q. Sun, L.X. Sun, T. Zhang, Chem. Mater. 22(2010) 5463-5473.
    [13]
    F. Li, W.B. Li, J. Li, W. Xue, Y.J. Wang, X.Q. Zhao, Appl. Catal. A-Gen. 473(2014) 355-362.
    [14]
    X.Q. Dong, Y.C. Wang, Y.Z. Yu, M.H. Zhang, Ind. Eng. Chem. Res. 57(2018) 7363-7373.
    [15]
    Y. Muñoz, R. Arriagada, G. Soto-Garrido, R. García, J. Chem. Technol. Biotechnol. 78(2003) 1252-1258.
    [16]
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19(2009) 438-447.
    [17]
    R. Kam, C. Selomulya, R. Amal, J. Scott, J. Catal. 273(2010) 73-81.
    [18]
    Y.H. Shen, Y.M. Li, H.C. Liu, J. Energy Chem. 24(2015) 669-673.
    [19]
    B. Dai, Q.Q. Wang, F. Yu, M.Y. Zhu, Sci. Rep. 5(2015) 10553-10563.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (218) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return