Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Ning Wei, Yang Chen, Kun Cai, Yingyan Zhang, Qingxiang Pei, Jin-Cheng Zheng, Yiu-Wing Mai, Junhua Zhao. Unusual thermal properties of graphene origami crease: A molecular dynamics study. Green Energy&Environment, 2022, 7(1): 86-94. doi: 10.1016/j.gee.2020.07.026
Citation: Ning Wei, Yang Chen, Kun Cai, Yingyan Zhang, Qingxiang Pei, Jin-Cheng Zheng, Yiu-Wing Mai, Junhua Zhao. Unusual thermal properties of graphene origami crease: A molecular dynamics study. Green Energy&Environment, 2022, 7(1): 86-94. doi: 10.1016/j.gee.2020.07.026

Unusual thermal properties of graphene origami crease: A molecular dynamics study

doi: 10.1016/j.gee.2020.07.026
  • Graphene is a two-dimensional material that can be folded into diverse and yet interesting nanostructures like macro-scale paper origami. Folding of graphene not only makes different morphological configurations but also modifies their mechanical and thermal properties. Inspired by paper origami, herein we studied systemically the effects of creases, where sp2 to sp3 bond transformation occurs, on the thermal properties of graphene origami using molecular dynamics (MD) simulations. Our MD simulation results show that tensile strain reduces (not increases) the interfacial thermal resistance owing to the presence of the crease. This unusual phenomenon is explained by the micro-heat flux migration and stress distribution. Our findings on the graphene origami enable the design of the next-generation thermal management devices and flexible electronics with tuneable properties.

     

  • loading
  • [1]
    N. Wei, L. Xu, H.Q. Wang, J.C. Zheng, Nanotechnology 22(2011) 105705.
    [2]
    F. Ma, H.B. Zheng, Y.J. Sun, D. Yang, K.W. Xu, P.K. Chu, Appl. Phys. Lett. 101(2012) 111901-111904.
    [3]
    Y. Yang, D. Zhong, Y. Liu, D. Meng, L. Wang, N. Wei, G. Ren, R. Yan, Y. Kang, Nanomaterials 2(2020) 285.
    [4]
    X. Mu, X. Wu, T. Zhang, D.B. Go, T. Luo, Sci. Rep. 4(2014) 3909.
    [5]
    S. Hu, J. Chen, N. Yang, B. Li, Carbon 139(2017) 139-144.
    [6]
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(2007) 183-191.
    [7]
    Y. Nishiyama, Int. J. Pure Appl. Math. 79(2012) 269-279.
    [8]
    Q. Cheng, Z. Song, T. Ma, B.B. Smith, R. Tang, H. Yu, H. Jiang, C.K. Chan, Nano Lett. 13(2013) 4969-4974.
    [9]
    C.H. Lin, D.S. Tsai, T.C. Wei, D.H. Lien, J.J. Ke, C.H. Su, J.Y. Sun, Y.C. Liao, J.H. He, ACS Nano 11(2017) 10230-10235.
    [10]
    S.M. Douglas, I. Bachelet, G.M. Church, Science 335(2011) 831-834.
    [11]
    M. Nogi, N. Komoda, K. Otsuka, K. Suganuma, Nanoscale 5(2013) 4395-4399.
    [12]
    G. Tikhomirov, P. Petersen, L. Qian, Nature 552(2017) 67.
    [13]
    K. Shokyoku, Y. Mayuka, A. Jun, K. Arihiro, A. Sadahito, J. Polym. Sci., Polym. Chem. Ed. 50(2012) 4594-4598.
    [14]
    S. Zhu, T. Li, ACS Nano 8(2014) 2864-2872.
    [15]
    W. Guo, C.Z. Zhu, T.X. Yu, C.H. Woo, B. Zhang, Y.T. Dai, Phys. Rev. Lett. 93(2004) 245502.
    [16]
    Z. Ding, Q. Pei, J. Jiang, W. Huang, Y. Zhang, Carbon 96(2016) 888-896.
    [17]
    Y. Chen, Y. Zhang, K. Cai, J. Jiang, J. Zheng, J. Zhao, N. Wei, Carbon 117(2017) 399-410.
    [18]
    Y. Wang, Z. Xu, Nat. Commun. 5(2014) 4297.
    [19]
    S. Plimpton, J. Comput. Phys. 117(1995) 1-19.
    [20]
    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys.:Condens. Matter 14(2002) 783-802.
    [21]
    R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 348(2001) 187-193.
    [22]
    O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Phys. Rev. B 61(2000) 3877.
    [23]
    E. Polak, Optimization:Algorithms and Consistent Approximations, Springer-Verlag, New York, 1997.
    [24]
    S. Nosé, J. Chem. Phys. 81(1984) 511.
    [25]
    W.G. Hoover, Phys. Rev. A 31(1985) 1695.
    [26]
    F. Müller-Plathe, J. Chem. Phys. 106(1997) 6082-6085.
    [27]
    F. Hao, D. Fang, Z. Xu, Appl. Phys. Lett. 99(2011) 41901.
    [28]
    T. Guo, Z. Sha, X. Liu, G. Zhang, T. Guo, Q. Pei, Y. Zhang, Appl. Phys. A 120(2015) 1275-1281.
    [29]
    J. Chen, J.H. Walther, P. Koumoutsakos, Nano Lett. 14(2014) 819-825.
    [30]
    A. Bagri, S. Kim, R.S. Ruoff, V.B. Shenoy, Nano Lett. 11(2011) 3917-3921.
    [31]
    M.A. Angadi, T. Watanabe, A. Bodapati, X. Xiao, O. Auciello, J.A. Carlisle, et al., J. Appl. Phys. 99(2006) 114301.
    [32]
    P.K. Schelling, S.R. Phillpot, P. Keblinski, J. Appl. Phys. 95(2004) 6082.
    [33]
    X. Liu, G. Zhang, Y. Zhang, Nano Lett. 16(2016) 4954-4959.
    [34]
    Z. Xu, M.J. Buehler, J. Phys. Condens. Matter 24(2012) 475305.
    [35]
    D. Alexeev, J. Chen, J.H. Walther, K.P. Giapis, P. Angelikopoulos, P. Koumoutsakos, Nano Lett. 15(2015) 5744-5749.
    [36]
    A. Morozenko, I.V. Leontyev, A.A. Stuchebrukhov, J. Chem. Theor. Comput. 10(2014) 4618.
    [37]
    P.P. Romańczyk, M. Radoń, K. Noga, S.S. Kurek, Phys. Chem. Chem. Phys. 15(2013) 17522-17536.
    [38]
    J.L. Rivera, C. McCabe, P.T. Cummings, Phys. Rev. E 67(2003) 11603.
    [39]
    S. Lin, M.J. Buehler, Nat. Nanotechnol. 24(2013) 165702.
    [40]
    L. Hu, T. Desai, P. Keblinski, Phys. Rev. B 83(2011) 195423.
    [41]
    Y. Wang, Z. Qin, M.J. Buehler, Z. Xu, Nat. Commun. 7(2016) 12854.
    [42]
    Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, G. Zhang, Phys. Rep. 860(2020) 1-26.
    [43]
    Y. Zhang, Q. Pei, J. Jiang, N. Wei, Y. Zhang, Nanoscale 8(2016) 483-491.
    [44]
    N. Yang, X. Ni, J. Jiang, B. Li, Appl. Phys. Lett. 100(2012) 93107.
    [45]
    Z. Guo, D. Zhang, X. Gong, Appl. Phys. Lett. 95(2009) 163103.
    [46]
    Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, M. Dresselhaus, Nat. Mater. 11(2012) 759-763.
    [47]
    Z. Song, V.I. Artyukhov, B.I. Yakobson, Z. Xu, Nano Lett. 13(2013) 1829-1833.
    [48]
    W. Huang, T. Mura, J. Appl. Phys. 41(1970) 5175-5179.
    [49]
    J.C.M. Li, Surf. Sci. 31(1972) 12-26.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (205) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return