Subasri Arunachalam, Balakrishnan Kirubasankar, Duo Pan, Hu Liu, Chao Yan, Zhanhu Guo, Subramania Angaiah. Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy&Environment, 2020, 5(3): 259-273. doi: 10.1016/j.gee.2020.07.021
Citation: Subasri Arunachalam, Balakrishnan Kirubasankar, Duo Pan, Hu Liu, Chao Yan, Zhanhu Guo, Subramania Angaiah. Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy&Environment, 2020, 5(3): 259-273. doi: 10.1016/j.gee.2020.07.021

Research progress in rare earths and their composites based electrode materials for supercapacitors

doi: 10.1016/j.gee.2020.07.021
  • Supercapacitor is an imminent potential energy storage system, and acts as a booster to the batteries and fuel cells to provide necessary power density. In the last decade, carbon and carbonaceous materials, conducting polymers and transition metal oxide/hydroxide based electrode materials have been made to show a remarkable electrochemical performance. Rare-earth materials have attracted significant research attention as an electrode material for supercapacitor applications based on their physicochemical properties. In this review, rare earth metals, rare earth metal oxides/hydroxides, rare-earth metal chalcogenides, rare-earth metal/carbon composites and rare-earth metal/metal oxide composites based electrode materials are discussed for supercapacitors. We also discuss the energy chemistry of rare-earth metal-based materials. Besides the factors that affect the performance of the electrode materials, their evaluation methods and supercapacitor performances are discussed in details. Finally, the future outlook in rare-earth-based electrode materials is revealed towards its current developments for supercapacitor applications.

     

  • These two authors contributed equally and should be treated as the first authors.
  • loading
  • [1]
    B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66 (1997) 1-14.
    [2]
    J.P. Zheng, J. Electrochem. Soc. 144 (1997) 2026-2031.
    [3]
    K. Sun, L. Wang, Z. Wang, X. Wu, G. Fan, Z. Wang, C. Cheng, R. Fan, M. Dong, Z. Guo, Phys. Chem. Chem. Phys. 22 (2020) 5114-5122.
    [4]
    K. Sun, R. Fan, Y. Yin, J. Guo, X. Li, Y. Lei, L. An, C. Cheng, Z. Guo, J. Phys. Chem. C 121 (2017) 7564-7571.
    [5]
    Y. Bin Tan, J.M. Lee, J. Mater. Chem. 1 (2013) 14814-14843.
    [6]
    G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, T.S. Fisher, Electroanalysis 26 (2014) 30-51.
    [7]
    W. Gu, G. Yushin, Wiley Interdiscip. Rev. Energy Environ. 3 (2014) 424-473.
    [8]
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38 (2009) 2520-2531.
    [9]
    L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Green Energy Environ.. 2 (2017) 84-99.
    [10]
    Z. Lu, X. Xu, Y. Chen, X. Wang, L. Sun, K. Zhuo, Green Energy Environ.. 5 (2020) 69-75.
    [11]
    S. Peng, L. Li, J. Kong Yoong Lee, L. Tian, M. Srinivasan, S. Adams, S. Ramakrishna, Nanomater. Energy 22 (2016) 361-395.
    [12]
    X. Wu, L. Jiang, C. Long, Z. Fan, Nanomater. Energy 13 (2015) 527-536.
    [13]
    F.L. Braghiroli, V. Fierro, A. Szczurek, N. Stein, J. Parmentier, A. Celzard, Carbon N. Y. 90 (2015) 63-74.
    [14]
    S.H. Park, S.B. Yoon, H.K. Kim, J.T. Han, H.W. Park, J. Han, S.M. Yun, H.G. Jeong, K.C. Roh, K.B. Kim, Sci. Rep. 4 (2014) 1-9.
    [15]
    X. Deng, Y. Jiang, Z. Wei, M. Mao, R. Pothu, H. Wang, C. Wang, J. Liu, J. Ma, Green Energy Environ. 4 (2019) 382-390.
    [16]
    S.G. Sayyed, M.A. Mahadik, A. V Shaikh, J.S. Jang, H.M. Pathan, ES Energy Environ. 3 (2019) 25-44.
    [17]
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40 (2011) 1697-1721.
    [18]
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 797-828.
    [19]
    A. Arico, Salvatore, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Mater. Sustain. Energy 4 (2010) 148-159.
    [20]
    K. Naoi, Fuel Cell. 10 (2010) 825-833.
    [21]
    P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845-854.
    [22]
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8 (2015) 702-730.
    [23]
    D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 44 (2015) 1777-1790.
    [24]
    R. Nie, Q. Wang, P. Sun, R. Wang, Q. Yuan, X. Wang, Eng. Sci. 6 (2018) 22-29.
    [25]
    Y. Wang, Y. Liu, C. Wang, H. Liu, J. Zhang, J. Lin, J. Fan, T. Ding, J.E. Ryu, Z. Guo, Eng. Sci. 9 (2020) 50-59.
    [26]
    B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, Chem. Eng. J. 355 (2019) 881-890.
    [27]
    S.W. Donne, A.F. Hollenkamp, B.C. Jones, J. Power Sources 195 (2010) 367-373.
    [28]
    J. Wei, N. Nagarajan, I. Zhitomirsky, J. Mater. Process. Technol. 186 (2007) 356-361.
    [29]
    K. Balakrishnan, M. Kumar, A. Subramania, Adv. Mater. Res. 938 (2014) 151-157.
    [30]
    E. Beaudrouet, A. Le Gal La Salle, D. Guyomard, Electrochim. Acta 54 (2009) 1240-1248.
    [31]
    H. Dong, Y. Li, H. Chai, Y. Cao, X. Chen, ES Energy Environ. 4 (2019) 19-26.
    [32]
    M. Kumar, A. Subramania, K. Balakrishnan, Electrochim. Acta 149 (2014) 152-158.
    [33]
    S. Devaraj, N. Munichandraiah, J. Electrochem. Soc. 154 (2007) A901-A909.
    [34]
    X. Wang, X. Zeng, D. Cao, Eng. Sci. 1 (2018) 55-63.
    [35]
    X. Li, W. Zhao, R. Yin, X. Huang, L. Qian, Eng. Sci. 3 (2018) 89-95.
    [36]
    N. Nagarajan, M. Cheong, I. Zhitomirsky, Mater. Chem. Phys. 103 (2007) 47-53.
    [37]
    Y. Liu, M. Shi, M. Han, J. Yang, J. Yu, M. Narayanasamy, K. Dai, S. Angaiah, C. Yan, Chem. Eng. J. 387 (2020) 124104.
    [38]
    L. Wang, M. Shi, C. Yang, Y. Liu, J. Jiang, K. Dai, Z. Guo, C. Yan, J. Alloys Compd. 804 (2019) 243-251.
    [39]
    L. Chen, R. Lin, C. Yan, Mater. Lett. 235 (2019) 6-10.
    [40]
    R.N. Reddy, R.G. Reddy, J. Power Sources 132 (2004) 315-320.
    [41]
    K. Rajendra Prasad, N. Miura, Electrochem. Commun. 6 (2004) 1004-1008.
    [42]
    S.-F. Chin, S.-C. Pang, M.A. Anderson, J. Electrochem. Soc. 149 (2002) A379-A384.
    [43]
    H. Peng, G. Ma, K. Sun, Z. Zhang, Q. Yang, Z. Lei, Electrochim. Acta 190 (2016) 862-871.
    [44]
    Z. Qu, M. Shi, H. Wu, Y. Liu, J. Jiang, C. Yan, J. Power Sources 410-411 (2019) 179-187.
    [45]
    B. Kirubasankar, S. Vijayan, S. Angaiah, Sustain. Energy Fuels 3 (2019) 467-477.
    [46]
    M. Shi, P. Xiao, J. Lang, C. Yan, X. Yan, Adv. Sci. (2019) 1901975(1-10).
    [47]
    M. Shi, C. Yang, C. Yan, J. Jiang, Y. Liu, Z. Sun, W. Shi, G. Jian, NPG Asia Mater.. 11 (2019) 1-11.
    [48]
    M. Narayanasamy, B. Kirubasankar, M. Shi, S. Velayutham, B. Wang, S. Angaiah, C. Yan, Chem. Commun. 56 (2020) 6412-6415.
    [49]
    K. Singh, B. Kirubasankar, S. Angaiah, Ionics 23 (2017) 731-739.
    [50]
    Z. Wang, K. Sun, P. Xie, Q. Hou, Y. Liu, Q. Gu, R. Fan, Acta Mater.. 185 (2020) 412-419.
    [51]
    S. Arunachalam, B. Kirubasankar, E. Rajagounder Nagarajan, D. Vellasamy, S. Angaiah, Chemistry 3 (2018) 12719-12724.
    [52]
    B. Kirubasankar, V. Murugadoss, S. Angaiah, RSC Adv.. 7 (2017) 5853-5862.
    [53]
    B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, Z. Guo, S. Angaiah, Nanoscale 10 (2018) 20414-20425.
    [54]
    V.D. Nithya, N.S. Arul, J. Power Sources 327 (2016) 297-318.
    [55]
    S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy, S. Angaiah, New J. Chem. 42 (2018) 2923-2932.
    [56]
    D. Han, X. Jing, J. Wang, P. Yang, D. Song, J. Liu, J. Electroanal. Chem. 682 (2012) 37-44.
    [57]
    S. Guangjie, Y.A.O. Yue, Z. Shipin, H.E. Pei, Rare Met.. 28 (2009) 132-136.
    [58]
    S. Vijayan, B. Kirubasankar, P. Pazhamalai, S. Angaiah, ChemElectroChem 4 (2017) 2059-2067.
    [59]
    Y. Xue, Y. Chen, M. lin Zhang, Y. de Yan, Int. J. Miner. Metall. Mater. 16 (2009) 112-118.
    [60]
    B. Wang, T. Kang, N. Xia, F. Wen, L. Chen, Ionics 19 (2013) 1527-1533.
    [61]
    N. Arun, A. Jain, V. Aravindan, S. Jayaraman, W. Chui Ling, M.P. Srinivasan, S. Madhavi, Nanomater. Energy 12 (2015) 69-75.
    [62]
    R. Aswathy, T. Kesavan, K. Kumaran, P. Ragupathy, J. Mater. Chem. 3 (2015) 12386-12395.
    [63]
    K. Ho, H. Liu, Q. Qing, K. Lu, M. Yating, H. Xu, J. Wang, J. Am. Ceram. Soc. 100 (2017) 247-256.
    [64]
    S.R. Gawali, D.P. Dubal, V.G. Deonikar, S.S. Patil, S.D. Patil, P. Gomez-Romero, D.R. Patil, J. Pant, Chemistry 1 (2016) 3471-3478.
    [65]
    F. Geng, Y. Matsushita, R. Ma, H. Xin, M. Tanaka, F. Izumi, N. Iyi, T. Sasaki, J. Am. Chem. Soc. 130 (2008) 16344-16350.
    [66]
    F. Geng, R. Ma, T. Sasaki, Acc. Chem. Res. 43 (2010) 1177-1185.
    [67]
    Y. Xin, Z. Wang, Y. Qi, Z. Zhang, S. Zhang, J. Alloys Compd. 507 (2010) 105-111.
    [68]
    J. Liang, R. Ma, T. Sasaki, Dalton Trans.. 43 (2014) 10355-10364.
    [69]
    A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, Int. J. Hydrogen Energy 41 (2016) 18311-18319.
    [70]
    R. Rajagopal, K. Ryu, J. Ind. Eng. Chem. 60 (2018) 441-450.
    [71]
    A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Electrochim. Acta 281 (2018) 329-337.
    [72]
    N. Maheswari, G. Muralidharan, Energy Fuels 29 (2015) 8246-8253.
    [73]
    N. Maheswari, G. Muralidharan, Dalton Trans. 45 (2016) 14352-14362.
    [74]
    H. Wang, M. Liang, X. Zhang, D. Duan, W. Shi, Y. Song, Z. Sun, Ionics 24 (2018) 2063-2072.
    [75]
    S.J. Patil, V.S. Kumbhar, B.H. Patil, R.N. Bulakhe, C.D. Lokhande, J. Alloys Compd. 611 (2014) 191-196.
    [76]
    S.J. Patil, A.C. Lokhande, C.D. Lokhande, Mater. Sci. Semicond. Process. 41 (2016) 132-136.
    [77]
    S.J. Patil, R.N. Bulakhe, C.D. Lokhande, Chem. Plus. Chem. 80 (2015) 1478-1487.
    [78]
    S.J. Patil, V.C. Lokhande, N.R. Chodankar, C.D. Lokhande, J. Colloid Interface Sci. 469 (2016) 318-324.
    [79]
    S.J. Patil, A.C. Lokhande, D. Lee, J.H. Kim, C.D. Lokhande, J. Colloid Interface Sci. 490 (2017) 147-153.
    [80]
    W. Zhang, A. Loh, X. Li, F.C. Walsh, L. Kong, ACS Energy Lett. 2 (2017) 336-341.
    [81]
    V.S. Kumbhar, A.D. Jagadale, C.D. Lokhande, J. Power Sources 234 (2013) 107-110.
    [82]
    V.S. Kumbhar, A.C. Lokhande, N.R. Chodankar, N.S. Gaikwad, C.D. Lokhande, Mater. Lett. 223 (2018) 45-48.
    [83]
    N. Bibi, Y. Xia, S. Ahmed, Y. Zhu, S. Zhang, A. Iqbal, Ceram. Int. 44 (2018) 22262-22270.
    [84]
    Y. Wang, C. Xian Guo, J. Liu, T. Chen, H. Yang, C. Ming Li, Dalton Trans. 40 (2011) 6388-6391.
    [85]
    Y. Luo, T. Yang, Q. Zhao, M. Zhang, J. Alloys Compd. 729 (2017) 64-70.
    [86]
    A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, RSC Adv.. 5 (2015) 46050-46058.
    [87]
    L.S. Aravinda, K. Udaya Bhat, B. Ramachandra Bhat, Mater. Lett. 112 (2013) 158-161.
    [88]
    N. Padmanathan, S. Selladurai, RSC Adv.. 4 (2014) 6527-6534.
    [89]
    Z. Ji, X. Shen, H. Zhou, K. Chen, Ceram. Int. 41 (2015) 8710-8716.
    [90]
    D. Deng, N. Chen, X. Xiao, S. Du, Y. Wang, Ionics 23 (2017) 121-129.
    [91]
    A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Appl. Surf. Sci. 402 (2017) 245-253.
    [92]
    Y. Li, B. Guan, A. Maclennan, Y. Hu, D. Li, J. Zhao, Y. Wang, H. Zhang, Electrochim. Acta 241 (2017) 395-405.
    [93]
    N. Sabari Arul, D. Mangalaraj, R. Ramachandran, A.N. Grace, J.I. Han, J. Mater. Chem. 3 (2015) 15248-15258.
    [94]
    S.J. Zhu, J.Q. Jia, T. Wang, D. Zhao, J. Yang, F. Dong, Z.G. Shang, Y.X. c Zhang, Chem. Commun. 51 (2015) 14840-14843.
    [95]
    C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhang, Inorg. Chem. Front. 5 (2018) 3126-3134.
    [96]
    N. Chen, A. Younis, S. Huang, D. Chu, S. Li, J. Alloys Compd. 783 (2019) 772-778.
    [97]
    G. Prasad, B. Pant, S. Park, M. Park, H. Kim, J. Colloid Interface Sci. 494 (2017) 338-344.
    [98]
    M. Vanitha, P. Cao, N. Balasubramanian, J. Alloys Compd. 644 (2015) 534-544.
    [99]
    A. Xie, F. Tao, T. Li, L. Wang, S. Chen, S. Luo, C. Yao, Electrochim. Acta 261 (2018) 314-322.
    [100]
    W. Sun, Z. Mo, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 178 (2013) 527-532.
    [101]
    M. Majumder, R.B. Choudhary, A.K. Thakur, I. Karbhal, RSC Adv.. 7 (2017) 20037-20048.
    [102]
    A. Jeyaranjan, T. Selvan, C.J. Neal, S. Seal, Carbon N. Y. 151 (2019) 192-202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (165) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return