Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Jingjuan Qiao, Weizhou Jiao, Youzhi Liu. Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process. Green Energy&Environment, 2021, 6(6): 910-919. doi: 10.1016/j.gee.2020.07.018
Citation: Jingjuan Qiao, Weizhou Jiao, Youzhi Liu. Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process. Green Energy&Environment, 2021, 6(6): 910-919. doi: 10.1016/j.gee.2020.07.018

Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process

doi: 10.1016/j.gee.2020.07.018
  • As nitrobenzene (NB) is structurally stable and difficult to degrade due to the presence of an electron withdrawing group (nitro group). The sequential nanoscale zero valent iron-persulfate (NZVI-Na2S2O8) process was proposed in this study for the degradation NB-containing wastewater. The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVI-Na2S2O8 process were 100% and 49.25%, respectively, at a NB concentration of 200 mg L-1, a NZVI concentration of 0.75 g L-1, a Na2S2O8 concentration of 26.8 mmol L-1, an initial pH of 5, and a reaction time of 30 min, which were higher than those (88.53% and 35.24%, respectively) obtained in the NZVI/Na2S2O8 process. Sulfate radicals (SO4·-) and hydroxyl radicals (·OH) generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments, and it was shown that both SO4·- and ·OH played a major role in the sequential NZVI-Na2S2O8 process. The possible pathways involved in the reduction of NB to aniline (AN) and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry.

     

  • loading
  • [1]
    Y.Q. Wang, M.Y. Zhu, Y.C. Li, M.J. Zhang, X.Y. Xue, Y.L. Shi, B. Dai, X.H. Guo, F. Yu, Green Energy Environ. 3(2018) 172-178.
    [2]
    S. Jiao, Y.M. Zhao, C.S. Li, B.S. Wang, Y. Qu, Green Energy Environ. 4(2019) 66-74.
    [3]
    J. Guo, L. Zhu, N. Sun, Y.Q. Lan, J. Taiwan Inst. Chem. Eng. 78(2017) 137-143.
    [4]
    W.Z. Jiao, S. Luo, Z. He, Y.Z. Liu, Chem. Eng. J. 313(2017) 912-927.
    [5]
    W.Z. Jiao, Y.J. Qin, S. Luo, Z. He, Z.R. Feng, Y.Z. Liu, Chem. Eng. J. 321(2017) 564-571.
    [6]
    W.Z. Jiao, Y.J. Qin, S. Luo, Z.R. Feng, Y.Z. Liu, J. Nanopart. Res. 19(2017) 52.
    [7]
    C.C. Lin, S.C. Chen, Adv. Powder Technol. 27(2016) 323-329.
    [8]
    H.L. Fan, S.F. Zhou, J. Gao, Y.Z. Liu, J. Alloys Compd. 671(2016) 354-359.
    [9]
    B.C. Sun, X.M. Wang, J.M. Chen, G.W. Chu, J.F. Chen, L. Shao, Chem. Eng. J. 168(2011) 731-736.
    [10]
    Z.G. Shen, J.F. Chen, J. Yun, J. Cryst. Growth 267(2004) 325-335.
    [11]
    J.F. Chen, L. Shao, China Particuol. 1(2013) 64-69.
    [12]
    Q. Sun, B. Chen, X. Wu, M. Wang, C. Zhang, X.F. Zeng, J.X. Wang, J.F. Chen, Ind. Eng. Chem. Res. 54(2015) 666-671.
    [13]
    S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou, Chem. Eng. J. 330(2017) 44-62.
    [14]
    L.W. Matzek, K.E. Carter, Chemosphere 15(2016) 178-188.
    [15]
    J.L. Wang, S.Z. Wang, Chem. Eng. J. 334(2018) 1502-1517.
    [16]
    I. Hussain, Y.Q. Zhang, M.Y. Li, S.B. Huang, W. Hayat, L.M. He, X.D. Du, G.Q. Liu, M.M. Du, Catal. Today 310(2018) 130-140.
    [17]
    W.D. Oh, Z.L. Dong, T.T. Lim, Appl. Catal. B Environ. 194(2016) 169-201.
    [18]
    Q. Wang, X.H. Lu, Y. Cao, J. Ma, J. Jiang, X.F. Bai, T. Hu, Chem. Eng. J. 328(2017) 236-245.
    [19]
    Z.S. Wei, F.A. Villamena, L.K. Weavers, Environ. Sci. Technol. 51(2017) 3410-3417.
    [20]
    C.C. Lin, M.S. Wu, Chem. Eng. Process. 85(2014) 209-215.
    [21]
    C.D. Qi, X.T. Liu, J. Ma, C.Y. Lin, X.W. Li, H.J. Zhang, Chemosphere 151(2016) 280-288.
    [22]
    L. Luo, Y.L. Wang, M.L. Zhu, X.W. Cheng, X.L. Zhang, X.Z. Meng, X. Huang, H.X. Hao, Ind. Eng. Chem. Res. 58(2019) 8699-8711.
    [23]
    S.Y. Oh, H.W. Kim, J.M. Park, H.S. Park, C. Yoon, J. Hazard. Mater. 168(2009) 346-351.
    [24]
    Y.P. Guo, Z.Q. Zeng, Y.L. Li, Z.G. Huang, Y. Cui, Catal. Today 307(2018) 12-19.
    [25]
    A. Romero, A. Santos, F. Vicente, C. González, Chem. Eng. J. 162(2010) 257-265.
    [26]
    R. Pulicharla, R. Drouinaud, S.K. Brar, P. Drogui, F. Proulx, M. Verma, R.Y. Surampalli, Chemosphere 207(2018) 543-551.
    [27]
    M.A. Al-Shamsi, N.R. Thomson, Ind. Eng. Chem. Res. 52(2013) 13564-13571.
    [28]
    C.C. Lin, Y.H. Chen, Separ. Purif. Technol. 194(2018) 388-395.
    [29]
    B.H. Moon, Y.B. Park, K.H. Park, Desalination 268(2011) 249-252.
    [30]
    J.A. Mielczarski, G.M. Atenas, E. Mielczarski, Appl. Catal. B Environ. 56(2005) 289-303.
    [31]
    F. Chen, S. Zeng, J. Ma, Q.L. Zhu, S.L. Zhang, Water, Air, Soil Pollut. 229(2018) 333-340.
    [32]
    D.S. Zhang, W.Q. Gao, G.Z. Chang, S. Luo, W.Z. Jiao, Y.Z. Liu, Adv. Powder Technol. 30(2019) 581-589.
    [33]
    J.J. Qiao, S. Luo, P.Z. Yang, W.Z. Jiao, Y.Z. Liu, J. Taiwan Inst. Chem. Eng. 99(2019) 1-8.
    [34]
    L. Wojnárovits, E. Takács, Chemosphere 220(2019) 1014-1032.
    [35]
    A. Abinash, P.G. Tratnyek, Environ. Sci. Technol. 30(1996) 153-160.
    [36]
    X. Wang, L.G. Wang, J.B. Li, J.J. Qiu, C. Cai, H. Zhang, Separ. Purif. Technol. 122(2014) 41-46.
    [37]
    G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17(1988) 513-886.
    [38]
    Z.H. Diao, X.R. Xu, D. Jiang, L.J. Kong, Y.X. Sun, Y.X. Hu, Q.W. Hao, H. Chen, Chem. Eng. J. 302(2016) 213-222.
    [39]
    C.J. Liang, Z.S. Wang, C.J. Bruell, Chemosphere 66(2007) 106-113.
    [40]
    P.D. Goulden, D.H.J. Anthony, Anal. Chem. 50(1978) 953-958.
    [41]
    G.S. Timmins, K.J. Liu, E.J.H. Bechara, Y. Kotake, H.M. Swartz, Free Radical Biol. Med. 27(1999) 329-333.
    [42]
    G.D. Fang, W.H. Wu, Y.M. Deng, D.M. Zhou, Chem. Eng. J. 323(2017) 84-95.
    [43]
    C.J. Liang, H.W. Su, Ind. Eng. Chem. Res. 48(2009) 5558-5562.
    [44]
    J.Y. Zhu, C. Chen, Y.X. Li, L.X. Zhou, Y.Q. Lan, Separ. Purif. Technol. 209(2019) 1007-1015.
    [45]
    X.W. Li, B. Wang, Y.H. Huang, J. Di, J.X. Xia, W.S. Zhu, H.M. Li, Green Energy Environ. 4(2019) 198-206.
    [46]
    W.Z. Jiao, Z.R. Feng, Y.Z. Liu, H.H. Jiang, J. Nanoparticle Res. 18(2016) 198-206.
    [47]
    Y. Wu, J. Guo, Y.J. Han, J.Y. Zhu, L.X. Zhou, Y.Q. Lan, Chemosphere 200(2018) 373-379.
    [48]
    W.S. Chen, C.P. Huang, Chem. Eng. J. 266(2015) 279-288.
    [49]
    Z.Q. Zeng, H.K. Zou, X. Li, B.C. Sun, J.F. Chen, L. Shao, Ind. Eng. Chem. Res. 51(2012) 10509-10516.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return