Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zuo Chen, Man Zhang, Yuchen Wang, Zhiyu Yang, Di Hu, Yetao Tang, Kai Yan. Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors. Green Energy&Environment, 2021, 6(6): 929-937. doi: 10.1016/j.gee.2020.07.015
Citation: Zuo Chen, Man Zhang, Yuchen Wang, Zhiyu Yang, Di Hu, Yetao Tang, Kai Yan. Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors. Green Energy&Environment, 2021, 6(6): 929-937. doi: 10.1016/j.gee.2020.07.015

Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors

doi: 10.1016/j.gee.2020.07.015
  • High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge. In this study, nitrogen-doped nanoporous carbon with large specific area of 2359.1 m2 g-1 is facilely fabricated from metal-polluted miscanthus waste for efficient energy storage. The synergistic effect of KOH, urea and ammonia solution greatly improve the nitrogen quantity and surface area of the synthesized carbon. Electrodes fabricated with this carbon exhibit the excellent capacitance performance of 340.2 F g-1 at 0.5 A g-1 and a low combined resistance of 0.116 Ω, which are competitive with most of previously reported carbon-based electrodes. In addition, the as-obtained carbon electrode shows a high specific capacitance retention of over 99.6% even after 5000 cycles. Furthermore, the symmetric supercapacitor fabricated using the synthesized carbon achieves a superior energy density of 25.3 Wh kg-1 (at 400 W kg-1) in 1 mol L-1 Na2SO4 aqueous solution. This work provides an efficient route to upcycle metal-polluted plant waste for supercapacitor applications.

     

  • loading
  • [1]
    C. Larson, Science 343(2014) 1415.
    [2]
    D. Griggs, M. Stafford-Smith, O. Gaffney, J. Rockström, M.C. Öhman, P. Shyamsundar, W. Steffen, G. Glaser, N. Kanie, I. Noble, Nature 495(2013) 305-307.
    [3]
    H. Lin, R. Horn, Nature 517(2015) 553.
    [4]
    H. Ali, E. Khan, M.A. Sajad, Chemosphere 91(2013) 869-881.
    [5]
    J. Xu, C. Liu, P.C. Hsu, J. Zhao, T. Wu, J. Tang, K. Liu, Y. Cui, Nat. Commun. 10(2019) 2440.
    [6]
    N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, K. Scheckel, J. Hazard. Mater. 266(2014) 141-166.
    [7]
    H. Kovacs, K. Szemmelveisz, Chemosphere 166(2017) 8-20.
    [8]
    P.C. Abhilash, M. Yunus, Biomass Bioenergy 35(2011) 1371-1372.
    [9]
    A. Wang, Z. Zheng, R. Li, D. Hu, Y. Lu, H. Luo, K. Yan, Green Energy Environ. 4(2019) 414-423.
    [10]
    S. Karimi, K. Karimi, J. Clean. Prod. 187(2018) 37-45.
    [11]
    P. Mattei, R. Pastorelli, G. Rami, S. Mocali, L. Giagnoni, C. Gonnelli, G. Renella, J. Hazard. Mater. 333(2017) 144-153.
    [12]
    K. Yan, Y. Liu, Y. Lu, J. Chai, L. Sun, Catal. Sci. Technol. 7(2017) 1622-1645.
    [13]
    J. He, R. Zhu, B. Lin, J. Clean. Prod. 237(2019) 117783.
    [14]
    A. Sas-Nowosielska, R. Kucharski, E. Malkowski, M. Pogrzeba, J.M. Kuperberg, K. Krynski, Environ. Pollut. 128(2004) 373-379.
    [15]
    M. Šyc, M. Pohořelý, P. Kameníková, J. Habart, K. Svoboda, M. Punčochář, Biomass Bioenergy 37(2012) 106-113.
    [16]
    D. Hoornweg, P. Bhada-Tata, C. Kennedy, Nature 502(2013) 615-617.
    [17]
    Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.H. Yang, J. Luo, Adv. Funct. Mater. 27(2017) 1604687.
    [18]
    K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li, G. Chen, J. Power Sources 378(2018) 579-588.
    [19]
    Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu, L. Niu, B. Tichnell, L. Kong, L. Kang, Z. Liu, F. Ran, J. Power Sources 378(2018) 499-510.
    [20]
    T. Wei, X. Wei, Y. Gao, H. Li, Electrochim. Acta 169(2015) 186-194.
    [21]
    Q. Wang, Y. Zhang, J. Xiao, H. Jiang, T. Hu, C. Meng, J. Alloys Compd. 782(2019) 1103-1113.
    [22]
    Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Green Chem. 19(2017) 4132-4140.
    [23]
    C. Wang, Y. Xiong, H. Wang, Q. Sun, J. Colloid Interface Sci. 528(2018) 349-359.
    [24]
    F. Guo, X. Jiang, X. Li, K. Peng, C. Guo, Z. Rao, J. Mater. Sci. Mater. Electron. 30(2018) 914-925.
    [25]
    G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao, Z. Lei, Bioresour. Technol. 197(2015) 137-142.
    [26]
    M. Liu, K. Zhang, M. Si, H. Wang, L. Chai, Y. Shi, Carbon 153(2019) 707-716.
    [27]
    F. Barzegar, A. Bello, J.K. Dangbegnon, N. Manyala, X. Xia, Appl. Energy 207(2017) 417-426.
    [28]
    Z. Guo, J. Zhang, H. Liu, Y. Kang, J. Yu, C. Zhang, J. Clean. Prod. 159(2017) 38-46.
    [29]
    Z. Guo, A. Zhang, J. Zhang, H. Liu, Y. Kang, C. Zhang, Powder Technol. 309(2017) 74-78.
    [30]
    W. Qian, J. Zhu, Y. Zhang, X. Wu, F. Yan, Small 11(2015) 4959-4969.
    [31]
    T. Liu, F. Zhang, Y. Song, Y. Li, J. Mater. Chem. A 5(2017) 17705-17733.
    [32]
    M. Zhang, Y. Liu, B. Liu, Z. Chen, H. Xu, K. Yan, ACS Catal. 10(2020) 5179-5189.
    [33]
    Y. Li, B. Mou, Y. Liang, H. Dong, M. Zheng, Y. Xiao, Y. Liu, ACS Sustain. Chem. Eng. 7(2019) 15259-15266.
    [34]
    Y. Wang, X. Qiao, C. Zhang, X. Zhou, J. Energy Storage 26(2019) 100968.
    [35]
    M. Zhang, Y. He, D. Yan, H. Xu, A. Wang, Z. Chen, S. Wang, H. Luo, K. Yan, Nanoscale 11(2019) 22255-22260.
    [36]
    A. Wang, H. Wang, H. Deng, S. Wang, W. Shi, Z. Yi, R. Qiu, K. Yan, Appl. Catal. B Environ. 248(2019) 298-308.
    [37]
    C. Dai, J. Wan, J. Yang, S. Qu, T. Jin, F. Ma, J. Shao, Appl. Surf. Sci. 444(2018) 105-117.
    [38]
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19(2009) 438-447.
    [39]
    F. Gao, J. Qu, C. Geng, G. Shao, M. Wu, J. Mater. Chem. A 4(2016) 7445-7452.
    [40]
    T. Ouyang, K. Cheng, Y. Gao, S. Kong, K. Ye, G. Wang, D. Cao, J. Mater. Chem. A 4(2016) 9832-9843.
    [41]
    H. Quan, X. Fan, W. Wang, W. Gao, Y. Dong, D. Chen, Appl. Surf. Sci. 460(2018) 8-16.
    [42]
    B. Wang, Y. Wang, Y. Peng, X. Wang, N. Wang, J. Wang, J. Zhao, Chem. Eng. J. 348(2018) 850-859.
    [43]
    D. Hu, H. Xu, Z. Yi, Z. Chen, C. Ye, Z. Wu, H.F. Garces, K. Yan, ACS Sustain. Chem. Eng. 7(2019) 15339-15345.
    [44]
    S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Adv. Energy Mater. 8(2018) 1702545.
    [45]
    Z. Chen, H. Deng, M. Zhang, Z. Yang, D. Hu, Y. Wang, K. Yan, Nanoscale Adv. 2(2020) 2099-2105.
    [46]
    Z. Song, L. Miao, L. Li, D. Zhu, Y. Lv, W. Xiong, H. Duan, Z. Wang, L. Gan, M. Liu, J. Mater. Chem. A 8(2020) 3717-3725.
    [47]
    Y. Wang, C. Zhang, X. Qiao, A.N. Mansour, X. Zhou, J. Power Sources 423(2019) 18-25.
    [48]
    Z. Zhou, L. Miao, H. Duan, Z. Wang, Y. Lv, W. Xiong, D. Zhu, L. Li, M. Liu, L. Gan, Chin. Chem. Lett. 31(2020) 1226-1230.
    [49]
    D. Xue, D. Zhu, H. Duan, Z. Wang, Y. Lv, W. Xiong, L. Li, M. Liu, L. Gan, Chem. Commun. 55(2019) 11219-11222.
    [50]
    L. Zhu, F. Shen, R.L. Smith, L. Yan, L. Li, X. Qi, Chem. Eng. J. 316(2017) 770-777.
    [51]
    G. Sun, B. Li, J. Ran, X. Shen, H. Tong, Electrochim. Acta 171(2015) 13-22.
    [52]
    A. Bello, F. Barzegar, D. Momodu, J. Dangbegnon, F. Taghizadeh, N. Manyala, Electrochim. Acta 151(2015) 386-392.
    [53]
    Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Carbon 67(2014) 119-127.
    [54]
    M. Wahid, D. Puthusseri, D. Phase, S. Ogale, Energy Fuels 28(2014) 4233-4240.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return