Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Hong-Li Ding, Hai-Tao Yu, Xiao-dong Wang, Chen-Feng Guo, Bing Zheng, Ying Xie, Ting-Feng Yi. Improving the stability, lithium diffusion dynamics, and specific capacity of SrLi2Ti6O14 via ZrO2 coating. Green Energy&Environment, 2022, 7(1): 53-65. doi: 10.1016/j.gee.2020.07.014
Citation: Hong-Li Ding, Hai-Tao Yu, Xiao-dong Wang, Chen-Feng Guo, Bing Zheng, Ying Xie, Ting-Feng Yi. Improving the stability, lithium diffusion dynamics, and specific capacity of SrLi2Ti6O14 via ZrO2 coating. Green Energy&Environment, 2022, 7(1): 53-65. doi: 10.1016/j.gee.2020.07.014

Improving the stability, lithium diffusion dynamics, and specific capacity of SrLi2Ti6O14 via ZrO2 coating

doi: 10.1016/j.gee.2020.07.014
  • SrLi2Ti6O14 (SLTO) coated with different amount of ZrO2 was successfully prepared. The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity. Furthermore, ZrO2 coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film. As a result, the redox polarization was reduced, and the reversibility of the electrochemical reaction was enhanced. Particularly, SLTO-ZrO2-2 sample delivers a high initial lithiation capacity of 283.6 mA h g-1, and the values maintain at 251.7, 228.0, 207.4, 175.3, and 147.7 mA h g-1 at the current densities of 0.13, 0.26, 0.54, 1.31, and 2.62 A g-1, respectively. Our experiment also confirmed that SLTO materials coated with ZrO2 are suitable for high power density applications, and the lithiation specific energy efficiency of SLTO-ZrO2-2 is 200% as high as that of pure SLTO at a power density of 1257 W kg-1.

     

  • loading
  • [1]
    T.F. Yi, Y.R. Zhu, W. Tao, S. Luo, Y. Xie, X.F. Li, J. Power Sources 399(2018) 26-41.
    [2]
    J. Liu, X. F Li, M. Cai, R.Y. Li, X. L Sun, Electrochim. Acta 93(2013) 195-201.
    [3]
    W. Li, X. Bai, L.H. Zhang, A.J. Wei, X.H. Li, Z.F. Liu, J. Alloys Compd. 745(2018) 659-668.
    [4]
    D. Dambournet, I. Belharouak, J.W. Ma, K. Amine, J. Power Sources 196(2011) 2871-2874.
    [5]
    T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, H. Shen, J. Power Sources 222(2013) 448-454.
    [6]
    T.F. Yi, T.T. Wei, Y. Li, Y.B. He, Z.B. Wang, Energy Storage Mater. 26(2020) 165-197.
    [7]
    X. Sun, M. Hegde, Y. Zhang, M. He, L. Gu, Y. Wang, J. Shu, Int. J. Electrochem. Sci. 9(2014) 1583-1296.
    [8]
    T. Li, L. Shao, X. Lin, M. Shui, K. Wu, D. Wang, N. Long, Y. Ren, J. Shu, J. Electroanal. Chem. 722(2014) 54-59.
    [9]
    C. Wang, X. Xin, M. Shu, S. Huang, Y. Zhang, X. Li, Inorg. Chem. Front. 6(2019) 646-653.
    [10]
    H. Yu, Y. Zhang, X. Cheng, H. Zhu, R. Zheng, T. Liu, J. Zhang, M. Shui, J. Shu, Electrochim. Acta 283(2018) 1460-1467.
    [11]
    X. Wu, X. Li, C. Zhu, P. Li, H. Yu, Z. Guo, J. Shu, Mater. Today Energy 2(2016) 17-23.
    [12]
    C. Su, W. Fang, Z. Wei, Y. Tang, L. Fang, M. Sebastian, J. Am. Ceram. Soc. 97(2014) 3740-3743.
    [13]
    I. Koseva, J.P. Chaminade, P. Gravereau, S. Pechev, P. Peshev, J. Etourneau, J. Alloys Compd. 389(2005) 47-54.
    [14]
    I. Belharouak, K. Amine, Electrochem. Commun. 5(2003) 435-438.
    [15]
    S. Qian, H. Yu, L. Yan, P. Li, H. Lan, H. Zhu, N. Long, M. Shui, J. Shu, J. Power Sources 343(2017) 329-337.
    [16]
    N. Peng, H. Zhu, X. Cheng, H. Yu, T. Liu, R. Zheng, J. Zhang, M. Shui, J. Shu, Electrochim. Acta 265(2018) 437-447.
    [17]
    G. Liang, A.S. Pillai, V.K. Peterson, K.Y. Ko, C.M. Chang, C.Z. Lu, C.E. Liu, S.C. Liao, J.M. Chen, Z. Guo, W.K. Pang, Front. Energy Res. 6(2018) 89.
    [18]
    H. Li, L. Shen, X. Zhang, J. Wang, P. Nie, Q. Che, B. Ding, J. Power Sources 221(2013) 122-127.
    [19]
    Z. Li, F. Ding, Y. Zhao, Y. Wang, J. Li, K. Yang, F. Gao, Ceram. Int. 42(2016) 15464-15470.
    [20]
    J. Yang, B. Yan, J. Ye, X. Li, Y. Liu, H. You, Phys. Chem. Chem. Phys. 16(2014) 2882.
    [21]
    H. Luo, L. Shen, K. Rui, H. Li, X. Zhang, J. Alloys Compd. 572(2013) 37-42.
    [22]
    Y. Wu, S. Qian, H. Lan, L. Yan, H. Yu, X. Cheng, F. Ran, M.J. Shui, Ceram. Int. 43(2017) 7231-7236.
    [23]
    Y. Zhang, S. Qian, H. Zhu, X. Cheng, W. Ye, H. Yu, L. Yan, M. Shui, J. Shu, Ceram.Int. 43(2017) 12357-12361.
    [24]
    H. Yu, W. Ye, X. Cheng, T. Liu, K. Goh, Z.B. Wang, J. Shu, Ceram. Int. 45(2019) 6885-6890.
    [25]
    J. Zhao, Y. Wang, Nanomater. Energy 2(2013) 882-889.
    [26]
    D. Takamatsu, S. Mori, Y. Orikasa, T. Nakatsutsumi, Y. Koyama, H. Tanida, H. Arai, Y. Uchimoto, Z. Ogumi, J. Electrochem. Soc. 160(2013) A3054-A3060.
    [27]
    Y.J. Kim, T.J. Kim, J.W. Shin, B. Park, J. Cho, J. Electrochem. Soc. 149(2002) A1337.
    [28]
    Z.P. Shao, Y.F. Liu, Y.B. Chen, Z.X. Yu, J.Z. Li, Ionics 26(2020) 1173-1180.
    [29]
    D. Xu, S. Guo, Z. Ma, Y. Li, W. Kuang, Y. Gong, J. Supercrit. Fluids 155(2020) 104663.
    [30]
    B. Xiao, P.B. Wang, Z.J. He, Z. Yang, L.B. Tang, C.S. An, J.C. Zheng, Energy Technol. 7(2019) 1800829.
    [31]
    M.M. Loghavi, H. Mohammadi-Manesh, R. Eqra, J. Electroanal. Chem. 848(2019) 113326.
    [32]
    H. Abadikhah, E. Naderi Kalali, S. Khodi, X. Xu, S. Agathopoulos, ACS Appl. Mater. Interfaces 11(2019) 23535-23545.
    [33]
    B. Wang, Z. Wang, Y. Cui, Y. Yang, Z. Wang, B. Chen, G. Qian, Microporous Mesoporous Mater. 203(2015) 86-90.
    [34]
    C. Cheng, H. Yi, F. Chen, J. Electron. Mater. 43(2014) 3681-3687.
    [35]
    J. Cho, Y.J. Kim, T.J. Kim, B. Park, Angew. Chem. Int. Ed. 113(2001) 3471-3473.
    [36]
    I. Koseva, P. Peshev, S. Pechev, P. Gravereau, J.P. Chaminade, Z. Naturforsch. B 57(2020) 512-518.
    [37]
    L. Hou, X. Qin, X. Gao, T. Guo, X. Li, J. Li, J. Alloys Compd. 774(2019) 38-45.
    [38]
    Y. Liu, X. Yan, B. Xu, J. Lan, Y. Yu, X. Yang, Y. Lin, C. Nan, Chem. Eng. J. 361(2019) 1371-1380.
    [39]
    J. Zhu, J. Chen, H. Xu, S. Sun, Y. Xu, M. Zhou, X. Gao, Z. Sun, ACS Appl. Mater. Interfaces 11(2019) 17384-17392.
    [40]
    L. Liu, Y. Wang, C. Gao, C. Yang, K. Wang, H. Li, H. Gu, J. Membr. Sci. 592(2019) 117368.
    [41]
    C.S. Xu, H.T. Yu, C.F. Guo, Y. Xie, N. Ren, T.F. Yi, G.X. Zhang, Ionics 25(2019) 4567-4576.
    [42]
    M. Lou, H. Zhong, H.T. Yu, S.S. Fan, Y. Xie, T.F. Yi, Electrochim. Acta 237(2017) 217-226.
    [43]
    S.S. Fan, H.T. Yu, Y. Xie, T.F. Yi, G.H. Tian, Electrochim. Acta 259(2018) 855-864.
    [44]
    P. Zhang, Y. Gao, Q. Ru, H. Yan, F. Chen, F.C.C. Ling, Appl. Surf. Sci. 498(2019) 143829.
    [45]
    P. Yi, L. Zhu, C. Dong, K. Xiao, Surf. Coating. Technol. 363(2019) 198-202.
    [46]
    A. Vereschaka, S. Grigoriev, N. Sitnikov, F. Milovich, A. Aksenenko, N. Andreev, Int. J. Adv. Manuf. Technol. 102(2019) 2953-2965.
    [47]
    H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen, Y. Liu, Y. Huang, Nanomater. Energy 10(2014) 163-171.
    [48]
    H.G. Jung, N. Venugopal, B. Scrosati, Y.K. Sun, J. Power Sources 221(2013) 266-271.
    [49]
    X. Lin, P. Li, P. Wang, H. Yu, S. Qian, M. Shui, X. Zheng, N. Long, J. Shu, Electrochim. Acta 180(2015) 831-844.
    [50]
    H. Li, L. Shen, B. Ding, G. Pang, H. Dou, X. Zhang, Nanomater. Energy 13(2015) 18-27.
    [51]
    D. Dambournet, I. Belharouak, K. Amine, Inorg. Chem. 49(2010) 2822-2826.
    [52]
    H.L. Ding, H.T. Yu, C.F. Guo, Y. Xie, T.F. Yi, Electrochim. Acta 329(2020) 135139.
    [53]
    P.T. Kissinger, W.R. Heineman, J. Chem. Educ. 60(1983) 702-706.
    [54]
    S.B. Tang, M.O. Lai, L. Lu, Mater. Chem. Phys. 111(2008) 149-153.
    [55]
    Y. Xiao, J.Y. Hwang, Y.K. Sun, ACS Appl. Mater. Interfaces 9(2017) 39416-39424.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (241) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return