Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Menglei Yuan, Yu Sun, Yong Yang, Jingxian Zhang, Sobia Dipazir, Tongkun Zhao, Shuwei Li, Yongbing Xie, He Zhao, Zhanjun Liu, Guangjin Zhang. Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy&Environment, 2021, 6(6): 866-874. doi: 10.1016/j.gee.2020.07.012
Citation: Menglei Yuan, Yu Sun, Yong Yang, Jingxian Zhang, Sobia Dipazir, Tongkun Zhao, Shuwei Li, Yongbing Xie, He Zhao, Zhanjun Liu, Guangjin Zhang. Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy&Environment, 2021, 6(6): 866-874. doi: 10.1016/j.gee.2020.07.012

Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids

doi: 10.1016/j.gee.2020.07.012
  • Oxygen evolution reaction (OER) as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years. But, it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions. Herein, we report a simple self-template strategy to generate honeycomb-like Ni2P/N,P-C hybrids with preferred electronic architecture. Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly, the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway, which favor the diffusion of electrolyte to accessible active sites. Secondly, N,P-C substrate, on the one hand, largely contributes the electronic distribution near Fermi level (EF) thus boosting its electrical conductivity. On the other hand, the support effect result in the upshift of d-band center and electropositivity of Ni sites, which attenuates the energy barrier for the adsorption of OH- and the formation of *OOH. In consequence, the optimized Ni2P/N,P-C catalysts feature high electrocatalytic activity towards OER (a low overpotential of 252 mV to achieve 10 mA cm-2) and 10 h long-term stability, the outstanding performance is comparable to most of transition metal catalysts. This work gives a innovative tactics for contriving original OER electrocatalysts, inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design.

     

  • loading
  • [1]
    Y. Zheng, Y. Jiao, Y.H. Zhu, L.H. Li, Y. Han, Y. Chen, A.J. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 5(2014) 3783.
    [2]
    N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Chem. Soc. Rev. 46(2017) 337-365.
    [3]
    X. Liu, Y. Liu, L.Z. Fan, J. Mater. Chem. 5(2017) 15310-15314.
    [4]
    Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 54(2015) 52-65.
    [5]
    Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44(2015) 2060-2086.
    [6]
    C. Tang, H.F. Wang, Q. Zhang, Acc. Chem. Res. 51(2018) 881-889.
    [7]
    J. Wang, H.X. Zhong, Y.L. Qin, X.B. Zhang, Angew. Chem. Int. Ed. 52(2013) 5248-5253.
    [8]
    M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V.K.K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, Nature 530(2016) 465-468.
    [9]
    X.F. Lu, L.F. Gu, J.W. Wang, J.X. Wu, P.Q. Liao, G.R. Li, Adv. Mater. 29(2017) 1604437.
    [10]
    L. Han, S.J. Dong, E.K. Wang, Adv. Mater. 28(2016) 9266-9291.
    [11]
    M.S. Burke, S.H. Zou, L.J. Enman, J.E. Kellon, C.A. Gabor, E. Pledger, S.W. Boettcher, J. Phys. Chem. Lett. 6(2015) 3737-3742.
    [12]
    L.L. Li, T. Tian, J. Jiang, L.H. Ai, J. Power Sources 294(2015) 103-111.
    [13]
    M. Li, L. Bai, S.J. Wu, X.D. Wen, J.Q. Guan, ChemSusChem 11(2018) 1722-1727.
    [14]
    T. Chen, S.Z. Li, P.B. Gui, J. Wen, X.M. Fu, G.J. Fang, Nanotechnology 28(2019) 205451.
    [15]
    M.L. Yuan, M. Wang, P.L. Lu, Y. Sun, S. Dipazir, J.X. Zhang, S.W. Li, G.J. Zhang, J. Colloid Interface Sci. 533(2019) 503-512.
    [16]
    X. Luo, P. X. Ji, P. Y. Wang, R. L. Cheng, D. Chen, C. Lin, J. N. Zhang, J. W. He, Z. H. Shi, N. Li, X. Q. Xiao, S. C. Mu, Adv. Energy Mater. 10(2020) 1903891.
    [17]
    C. Lin, D.Q. Wang, H.H. Jin, P.Y. Wang, D. Chen, B.S. Liu, S.C. Mu, J. Mater. Chem. 8(2020) 4570-4578.
    [18]
    P.Y. Wang, Z.H. Pu, W.Q. Li, J.W. Zhu, C.T. Zhang, Y.F. Zhao, S.C. Mu, J. Catal. 377(2019) 600-608.
    [19]
    X.B. Chen, D.Z. Wang, Z.P. Wang, P. Zhou, Z.Z. Wu, F. Jiang, Chem. Commun. 54(2014) 11683-11685.
    [20]
    Y.S. Wei, M. Zhang, M. Kitta, Z. Liu, S. Horike, Q. Xu, J. Am. Chem. Soc. 141(2019) 7906-7916.
    [21]
    H. Sun, Q. Li, Y.B. Lian, C.F. Zhang, P.W. Qi, Q.Q. Mu, H.D. Jin, B.W. Zhang, M.Z. Chen, Z. Deng, Y. Peng, Appl. Catal. B Environ. 263(2020) 118139.
    [22]
    Y. Pan, K.A. Sun, S.J. Liu, X. Cao, K.L. Wu, W.C. Cheong, Z. Chen, Y. Wang, Y. Li, Y.Q. Liu, D.S. Wang, Q. Peng, C. Chen, Y.D. Li, J. Am. Chem. Soc. 140(2018) 2610-2618.
    [23]
    Y.B. Lian, H. Sun, X.B. Wang, P.W. Qi, Q.Q. Mu, Y.J. Chen, J. Ye, X.H. Zhao, Z. Deng, Y. Peng, Chem. Sci. 10(2019) 464-474.
    [24]
    J.L. Xia, H.Y. Zhao, B.L. Huang, L.L. Xu, M. Luo, J.W. Wang, F. Luo, Y.P. Du, C.H. Yan, Adv. Funct. Mater. 30(2020) 1908367.
    [25]
    Y. Fan, G. Yang, L. Lin, Y. Li, Nanoscale 10(2018) 13555-13564.
    [26]
    P.X. Ji, H.H. Jin, H.L. Xia, X. Luo, J.K. Zhu, Z.H. Pu, S.C. Mu, ACS Appl. Mater. Interfaces 12(2020) 727-733.
    [27]
    X. Xiao, C.T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D. Yu, Energy Environ. Sci. 10(2017) 893-899.
    [28]
    H. Sun, Y.X. Min, W.J. Yang, Y.B. Lian, L. Lin, K. Feng, Z. Deng, M.Z. Chen, J. Zhong, L. Xu, Y. Peng, ACS Catal. 9(2019) 8882-8892.
    [29]
    X. Tao, S. Luo, C.H. Tian, Y. Qing, X.H. Lu, N. Yan, Y.Q. Wu, ACS Sustain. Chem. Eng. 8(2020) 1859-1867.
    [30]
    X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Energy Environ. Sci. 9(2016) 123-129.
    [31]
    H. Jiang, Y.S. Liu, J.Y. Hao, Y.Q. Wang, W.Z. Li, J. Li, ACS Sustain. Chem. Eng. 5(2017) 5341-5350.
    [32]
    M.L. Yuan, S. Dipazir, M. Wang, Y. Sun, D.L. Gao, Y.L. Bai, M. Zhang, P.L. Lu, H.Y. He, X.Y. Zhu, S.W. Li, Z.J. Liu, Z.P. Luo, G.J. Zhang, J. Mater. Chem. 7(2019) 3317-3326.
    [33]
    Y. Sun, H.F. Jiu, J. Tian, L.X. Zhang, T. Han, F.B. Guo, M.Y. Qiu, J. Solid State Chem. 284(2020) 121182.
    [34]
    L.T. Yan, P.C. Dai, Y. Wang, X. Gu, L.J. Li, L. Cao, X.B. Zhao, ACS Appl. Mater. Interfaces 9(2017) 11642-11650.
    [35]
    F.S. Zhang, J.W. Wang, J. Luo, R.R. Liu, Z.M. Zhang, C.T. He, T.B. Lu, Chem. Sci. 9(2018) 1375-1384.
    [36]
    M.W. Jia, C. Choi, T.S. Wu, C. Ma, P. Kang, H.C. Tao, Q. Fan, S. Hong, S.Z. Liu, Y.L. Soo, Y.S. Jung, J.S. Qiu, Z.Y. Sun, Chem. Sci. 9(2018) 8775-8780.
    [37]
    Y. Zhao, Y.P. Zhao, H.S. Feng, J.Y. Shen, J. Mater. Chem. 21(2011) 8137-8145.
    [38]
    Y.Z. Chen, H.D. She, X.H. Luo, G.H. Yue, D.L. Peng, J. Cryst. Growth 311(2009) 1229-1233.
    [39]
    K. Zhou, W.J. Zhou, L.J. Yang, J. Lu, S. Cheng, W.J. Mai, Z.H. Tang, L.G. Li, S.W. Chen, Adv. Funct. Mater. 25(2015) 7530-7538.
    [40]
    J. Bai, B.J. Xi, H.Z. Mao, Y. Lin, X.J. Ma, J.K. Feng, S.L. Xiong, Adv. Mater. 30(2018) 1802310.
    [41]
    Z.Y. Wang, Y.F. Dong, H.J. Li, Z.B. Zhao, H.B. Wu, C. Hao, S.H. Liu, J.S. Qiu, X.W. Lou, Nat. Commun. 5(2014) 5002.
    [42]
    M.R. Gao, X. Cao, Q. Gao, Y.F. Xu, Y.R. Zheng, J. Jiang, S.H. Yu, ACS Nano 8(2014) 3970-3978.
    [43]
    H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, J.S. Qiu, Adv. Mater. 25(2013) 2219-2223.
    [44]
    Z.Y. Lin, G. Waller, Y. Liu, M.L. Liu, C.P. Wong, Adv. Energy Mater. 2(2012) 884-888.
    [45]
    T.T. Sun, J. Dong, Y. Huang, W. Ran, J.F. Chen, L.B. Xu, J. Mater. Chem. 6(2018) 12751-12758.
    [46]
    Z.H. Pu, I.S. Amiinu, C.T. Zhang, M. Wang, Z.K. Kou, S.C. Mu, Nanoscale 9(2017) 3555-3560.
    [47]
    G.X. Zhu, X.L. Xie, X.Y. Li, Y.J. Liu, X.P. Shen, K.Q. Xu, S.W. Chen, ACS Appl. Mater. Interfaces 10(2018) 19258-19270.
    [48]
    Y.Z. Xue, Z.Y. Ren, Y. Xie, S.C. Du, J. Wu, H.Y. Meng, H.G. Fu, Nanoscale 9(2017) 16256-16263.
    [49]
    F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin, J.M. Bao, W.A. Goddard, S. Chen, Z.F. Ren, Nat. Commun. 9(2018) 2551.
    [50]
    L.A. Stern, L.G. Feng, F. Song, X.L. Hu, Energy Environ. Sci. 8(2015) 2347-2351.
    [51]
    H. Sun, Y.X. Min, W.J. Yang, Y.B. Lian, L. Lin, K. Feng, Z. Deng, M.Z. Chen, J. Zhong, L. Xu, Y. Peng, ACS Catal. 9(2019) 8882-8892.
    [52]
    Y.Q. Sun, Z.H. Zhao, S. Wu, W.J. Li, B. Wu, G.N. Liu, G.Z. Chen, B. Xu, B.T. Kang, Y. Li, C.C. Li, ChemSusChem 13(2020) 2671-2676.
    [53]
    M.L. Yuan, H.H. Zhang, D.L. Gao, H.Y. He, Y. Sun, P.L. Lu, S. Dipazir, Q.G. Li, L. Zhou, S.W. Li, Z.J. Liu, J.H. Yang, Y.B. Xie, H. Zhao, G.J. Zhang, J. Mater. Chem. A. 8(2020) 2691-2700.
    [54]
    Y. Shao, X. Xiao, Y.P. Zhu, T.Y. Ma, Angew. Chem. Int. Ed. 58(2019) 14599-14604.
    [55]
    C.H. Lee, B. Jun, S.U. Lee, ACS Sustain. Chem. Eng. 6(2018) 4973-4980.
    [56]
    S.S. Shinde, C.H. Lee, J.Y. Yu, D.H. Kim, S.U. Lee, J.H. Lee, ACS Nano 12(2018) 596-608.
    [57]
    S.S. Shinde, C.H. Lee, A. Sami, D.H. Kim, S.U. Lee, J.H. Lee, ACS Nano 11(2017) 347-357.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return