Haishun Jiang, Siyu Zhao, Wenyao Li, Tobias P. Neville, Isil Akpinar, Paul R. Shearing, Dan J.L. Brett, Guanjie He. Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy&Environment, 2020, 5(4): 506-512. doi: 10.1016/j.gee.2020.07.009
Citation: Haishun Jiang, Siyu Zhao, Wenyao Li, Tobias P. Neville, Isil Akpinar, Paul R. Shearing, Dan J.L. Brett, Guanjie He. Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy&Environment, 2020, 5(4): 506-512. doi: 10.1016/j.gee.2020.07.009

Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions

doi: 10.1016/j.gee.2020.07.009
  • Hydrogen is one of the most attractive renewables for future energy application, therefore it is vital to develop cost-effective and highly-efficient electrocatalysts for the hydrogen evolution reaction (HER) to promote the generation of hydrogen from mild methods. In this work, Co–Mo phosphide nanosheets with the adjustable ratio of Co and Mo were fabricated on carbon cloth by a facile hydrothermal-annealing method. Owing to the unique nanostructures, abundant active surfaces and small resistance were achieved. Excellent electrocatalytic performances are obtained, such as the small overpotential of ∼67.3 mV to realize a current density of 10 mA cm−2 and a Tafel slope of 69.9 mV dec−1. Rapid recovery of the current response under multistep chronoamperometry is realized and excellent stability retained after the CV test for 2000 cycles. The change of electronic states of different elements was carefully studied which suggested the optimal electrochemical performance can be realized by tuning phosphorous and metal interactions.

     

  • loading
  • [1]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Noerskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 355 (2017) eaad4998.
    [2]
    J. Zhang, Q. Zhang, X. Feng, Support and Interface Effects in Water-Splitting Electrocatalysts, Advanced Materials, 31 (2019) 1808167.
    [3]
    F. Yu, L. Yu, I.K. Mishra, Y. Yu, Z.F. Ren, H.Q. Zhou, Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis, Materials Today Physics, 7 (2018) 121-138.
    [4]
    Y. Li, X. Tan, S. Chen, X. Bo, H. Ren, S.C. Smith, C. Zhao, Processable Surface Modification of Nickel-Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution, Angewandte Chemie International Edition, 58 (2019) 461-466.
    [5]
    L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution, Nature Catalysis, 2 (2019) 134-141.
    [6]
    M. Caban-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. Chang, M. Tsai, J. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nature Materials, 14 (2015) 1245-1251.
    [7]
    F. Haque, A. Zavabeti, B.Y. Zhang, R.S. Datta, Y. Yin, Z. Yi, Y. Wang, N. Mahmood, N. Pillai, N. Syed, H. Khan, A. Jannat, N. Wang, N. Medhekar, K. Kalantar-zadeh, J.Z. Ou, Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution, Journal of Materials Chemistry A, 7 (2019) 257-268.
    [8]
    M.H. Suliman, A. Adam, M.N. Siddiqui, Z.H. Yamani, M. Qamar, Facile synthesis of ultrathin interconnected carbon nanosheets as a robust support for small and uniformly-dispersed iron phosphide for the hydrogen evolution reaction, Carbon, 144 (2019) 764-771.
    [9]
    T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W.-B. Hu, X.-W. Du, K. Davey, S.-Z. Qiao, Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction, Advanced Materials, 31 (2019) 1807771.
    [10]
    L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen, Z. Ren, Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting, Energy & Environmental Science, (2020).
    [11]
    X. Dong, H. Yan, Y. Jiao, D. Guo, A. Wu, G. Yang, X. Shi, C. Tian, H. Fu, 3D hierarchical V-Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction, Journal of Materials Chemistry A, 7 (2019) 15823-15830.
    [12]
    S. Xie, B. Sun, H. Sun, K. Zhan, B. Zhao, Y. Yan, B.Y. Xia, Engineering of molybdenum sulfide nanostructures towards efficient electrocatalytic hydrogen evolution, International Journal of Hydrogen Energy, 44 (2019) 15009-15016.
    [13]
    J. Sun, M. Ren, L. Yu, Z. Yang, L. Xie, F. Tian, Y. Yu, Z. Ren, S. Chen, H. Zhou, Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays, Small, 15 (2019) 1804272.
    [14]
    Y. Peng, S. Chen, Electrocatalysts Based on Metal@carbon Core@shell Nanocomposites: An overview, Green Energy & Environment, 3 (2018) 335-351.
    [15]
    Y. Jing, H. Liu, R. Yan, J. Chen, H. Dai, C. Liu, X.-D. Zhang, Mesoporous CoP Nanowire Arrays for Hydrogen Evolution, ACS Applied Nano Materials, 2 (2019) 5922-5930.
    [16]
    W. Xiao, L. Zhang, D. Bukhvalov, Z. Chen, Z. Zou, L. Shang, X. Yang, D. Yan, F. Han, T. Zhang, Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction, Nano Energy, 70 (2020) 104445.
    [17]
    Z.-Y. Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan, S.-H. Yu, Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis, Energy & Environmental Science, 11 (2018) 1890-1897.
    [18]
    Z. Fang, L. Peng, Y. Qian, X. Zhang, Y. Xie, J.J. Cha, G. Yu, Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution, Journal of the American Chemical Society, 140 (2018) 5241-5247.
    [19]
    H.A. Bandal, A.R. Jadhav, A.H. Tamboli, H. Kim, Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction, Electrochimica Acta, 249 (2017) 253-262.
    [20]
    D. Jiang, Y. Xu, R. Yang, D. Li, S. Meng, M. Chen, CoP3/CoMoP Heterogeneous Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction, ACS Sustainable Chemistry & Engineering, 7 (2019) 9309-9317.
    [21]
    Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. Wang, Q. Yan, Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting, ACS Nano, 11 (2017) 11031-11040.
    [22]
    S. Zhao, J. Berry-Gair, W. Li, G. Guan, M. Yang, J. Li, F. Lai, F. Cora, K. Holt, D.J.L. Brett, G. He, I.P. Parkin, The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance, Advanced Science, (2020) 1903674.
    [23]
    M.Q. Yu, L.X. Jiang, H.G. Yang, Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution, Chemical Communications, 51 (2015) 14361-14364.
    [24]
    Y. Lin, M. Liu, Y. Pan, J. Zhang, Porous Co-Mo phosphide nanotubes: an efficient electrocatalyst for hydrogen evolution, Journal of Materials Science, 52 (2017) 10406-10417.
    [25]
    H. Wu, K. Lian, The Development of Pseudocapacitive Molybdenum Oxynitride Electrodes for Supercapacitors, ECS Transactions, 58 (2014) 67-75.
    [26]
    H. Liu, D. Liu, M. Gu, Z. Zhao, D. Chen, P. Cui, L. Xu, J. Yang, Highly purified dicobalt phosphide nanodendrites on exfoliated graphene: In situ synthesis and as robust bifunctional electrocatalysts for overall water splitting, Materials Today Energy, 14 (2019) 100336.
    [27]
    H. Zhang, H. Jiang, Y. Hu, H. Jiang, C. Li, Integrated Ni-P-S Nanosheets Array as Superior Electrocatalysts for Hydrogen Generation, Green Energy and Environment, 2 (2017) 112-118.
    [28]
    B.E. Barton, T.B. Rauchfuss, Hydride-Containing Models for the Active Site of the Nickel−Iron Hydrogenases, Journal of the American Chemical Society, 132 (2010) 14877-14885.
    [29]
    R. Xu, L. Kang, J. Knossalla, J. Mielby, Q. Wang, B. Wang, J. Feng, G. He, Y. Qin, J. Xie, A.-C. Swertz, Q. He, S. Kegnaes, D.J.L. Brett, F. Schuth, F.R. Wang, Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance, ACS Nano, 13 (2019) 2463-2472.
    [30]
    Z. Wu, L. Huang, H. Liu, H. Wang, Element-Specific Restructuring of Anion- and Cation-Substituted Cobalt Phosphide Nanoparticles under Electrochemical Water-Splitting Conditions, ACS Catalysis, 9 (2019) 2956-2961.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (136) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return