Changsheng Chen, Xianren Zhang, Dapeng Cao. Role of substrate softness in stabilizing surface nanobubbles. Green Energy&Environment, 2020, 5(3): 374-380. doi: 10.1016/j.gee.2020.07.008
Citation: Changsheng Chen, Xianren Zhang, Dapeng Cao. Role of substrate softness in stabilizing surface nanobubbles. Green Energy&Environment, 2020, 5(3): 374-380. doi: 10.1016/j.gee.2020.07.008

Role of substrate softness in stabilizing surface nanobubbles

doi: 10.1016/j.gee.2020.07.008
  • The contact line pinning and supersaturation theory for the nanobubble stability has attracted extensive concerns from experimental investigators, and some experimenters argue that the contact line pinning is unnecessary. To interpret the experimental observations, we have proposed previously through molecular dynamics simulations that the deformation of soft substrates caused by surface nanobubbles may play an important role in stabilizing surface nanobubbles, while yet no quantitative theory is available for explanation of this mechanism. Here, the detailed mechanism of self-pinning-induced stability of surface nanobubbles is investigated through theoretical analysis. By manipulating substrate softness, we find that the formation of surface nanobubbles may create a deformation ridge nearby their contact lines which leads to the self-pinning effect. Theoretical analysis shows that the formation of nanobubbles on sufficiently rigid substrates or on liquid–liquid interfaces corresponds to a local free energy maximum, while that on the substrates with intermediate softness corresponds to a local minimum. Thus, the substrate softness could regulate the surface nanobubble stability. The critical condition for the self-pinning effect is determined based on contact line depinning, and the effect of gas supersaturation is explored. Finally, the approximate stability range for the surface nanobubbles is also predicted.

     

  • loading
  • [1]
    J. H. Weijs, and Detlef Lohse, Phy. Rev. Lett. 110 (2013) 054501.
    [2]
    Y. Liu and X. Zhang, J. Chem. Phys. 138 (2013) 014706.
    [3]
    Y. Liu and X. Zhang, J. Chem. Phys. 141 (2014) 134702.
    [4]
    D. Lohse and X. Zhang, Phy. Rev. E 91 (2015) 031003.
    [5]
    Z. Guo, X. Wang, and X. Zhang. Langmuir. 35 (2019) 8482-8489.
    [6]
    B. H. Tan, H. An, and C. D. Ohl, Phys. Rev. Lett. 122 (2019) 134502.
    [7]
    C. U. Chan, M. Arora, and C. D. Ohl, Langmuir. 31 (2015)7041-7046.
    [8]
    B. H. Tan, H. An, and C. D. Ohl, Phys. Rev. Lett. 120 (2018) 164502.
    [9]
    M. Alheshibri, J. Qian, M. Jehannin, and V. S. Craig, Langmuir 32 (2016) 11086-11100.
    [10]
    D. S. Bull, N. Nelson, D. Konetski, et al. J. Phys. Chem. Lett. 9 (2018) 4239-4244.
    [11]
    B. H. Tan, H. An, and C. D. Ohl, Phy. Rev. Lett. 118 (2017) 054501.
    [12]
    H. An, G. Liu, R. Atkin, and V. S. Craig, ACS Nano 9 (2015) 7596-7607.
    [13]
    J. Qian, V. S. Craig, and M. Jehannin, Langmuir 35 (2015) 718-728.
    [14]
    D. S. Bull, N. Nelson, D. Konetski, C. N. Bowman, D. K. Schwartz, A. P. Goodwin, J. Phys. Chem. Lett. 536 (2018) 4239−4244.
    [15]
    S. Karpitschka, S. Das, M. van Gorcum, H. Perrin, B. Andreotti, and J. H. Snoeijer, Nat. Commun. 6 (2015) 7891.
    [16]
    E. R. Jerison, Y. Xu, L. A. Wilen, and E. R. Dufresne, Phys. Rev. Lett. 106 (2011) 186103.
    [17]
    R. Pericet-Camara, A. Best, H. J. Butt, and E. Bonaccurso, Langmuir. 24 (2008) 10565-10568.
    [18]
    M. Shanahan, J. Phys. D: Appl. Phys. 20 (1987) 945.
    [19]
    S. Karpitschka, A. Pandey, L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, and J.H. Snoeijer, Proc. Natl Acad. Sci. USA113 (2016) 7403-7407.
    [20]
    L. A. Lubbers, J.H. Weijs, L. Botto, S. Das, B. Andreotti and J.H. Snoeijer, J. Fluid Mech. 747 (2014) R1.
    [21]
    R. Shuttleworth, Section A 63 (1950) 444.
    [22]
    S. Das, A. Marchand, B. Andreotti, et al. Physics of Fluids. 23 (2011) 072006.
    [23]
    A. Marchand, S. Das, J. H. Snoeijer, and B. Andreotti, Phys. Rev. Lett. 108 (2012) 94301.
    [24]
    J. H. Weijs, B. Andreotti, and J. H. Snoeijer, Soft Matter. 9 (2013) 8494-8503.
    [25]
    J. H. Snoeijer, E. Rolley, and B. Andreotti, Phys. Rev. Lett. 121(2018) 068003.
    [26]
    R. W. Style, R. Boltyanskiy, Y. Che, et al. Phys. Rev. Lett. 110 (2013) 066103.
    [27]
    R. W. Style and E. R. Dufresne, Soft Matter 8 (2012) 7177-7184.
    [28]
    R. W. Style, Y. Che, S. J. Park, B. M. Weon, J. H. Je, C. Hyland, G. K. German, M. P. Power, L. A. Wilen, J. S. Wettlaufer, E. R. Dufresne, Proc. Natl Acad. Sci. USA 110 (2013) 12541-12544.
    [29]
    R. W. Style, R. Boltyanskiy, B. Allen, et al. Nature Physics. 11 (2015) 82-87.
    [30]
    B.Andreotti, O. Baumchen, F. Boulogne, et al. Soft Matter. 12 (2016) 2993-2996.
    [31]
    Z. Cao and A .V. Dobrynin, Macromolecules. 48 (2015) 443-451.
    [32]
    P. S. Laplace, Memoire sur la theorie de l'anneau de Saturne, Hist. Acad. Sci. Paris (1787)
    [33]
    F. Neumann, Vorlesungen uber die Theorie der Capillaritat (Teubner, Leipzig, 1894).
    [34]
    M. van Gorcum, B. Andreotti, J.H. Snoeijer, and S. Karpitschka, Phys. Rev. Lett. 121 (2018) 208003.
    [35]
    T. Kajiya, Soft Matter. 10 (2014) 8888.
    [36]
    S. J. Park, J. B. Bostwick, V. De Andrade, and J. H. Je, Soft Matter. 13 (2017) 8331.
    [37]
    A. Carre, J. C. Gastel, and M. E. R. Shanahan, Nature 379 (1996) 432-434.
    [38]
    M. P. Brenner, and Detlef Lohse, Phys. Rev. Lett. 101 (2008) 214505.
    [39]
    R. K. Niven. J. Non-Equil. Thermody. 35 (2010) 347-378.
    [40]
    Y. Kawazura, Z. Yoshida. Phys. Plasmas. 19 (2012) 012305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (209) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return