Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Shiru Lin, Kaitlyn A. Jacoby, Jinxing Gu, Dariana R. Vega-Santander, Arturo J. Hernández-Maldonado, Zhongfang Chen. Zeolite-templated carbons as effective sorbents to remove methylsiloxanes and derivatives: A computational screening. Green Energy&Environment, 2021, 6(6): 884-892. doi: 10.1016/j.gee.2020.07.007
Citation: Shiru Lin, Kaitlyn A. Jacoby, Jinxing Gu, Dariana R. Vega-Santander, Arturo J. Hernández-Maldonado, Zhongfang Chen. Zeolite-templated carbons as effective sorbents to remove methylsiloxanes and derivatives: A computational screening. Green Energy&Environment, 2021, 6(6): 884-892. doi: 10.1016/j.gee.2020.07.007

Zeolite-templated carbons as effective sorbents to remove methylsiloxanes and derivatives: A computational screening

doi: 10.1016/j.gee.2020.07.007
  • Though widely used in our daily lives, volatile methylsiloxanes and derivatives are emerging contaminants and becoming a high-priority environment and public health concern. Developing effective sorbent materials can remove siloxanes in a cost-effective manner. Herein, by means of Grand Canonical Monte Carlo (GCMC) simulations, we evaluated the potentials of the recently proposed 68 stable zeolite-templated carbons (ZTCs) (PNAS 2018 , 115, E8116-E8124) for the removal of four linear methylsiloxanes and derivatives as well as two cyclic methylsiloxanes by the calculated average loading and average adsorption energy values. Four ZTCs, namely ISV, FAU1, FAU3, and H8326836, were identified with the top 50% adsorption performance toward all the six targeted contaminants, which outperform activated carbons. Further first principles computations revealed that steric hindrance, electrostatic interactions (further enhanced by charge transfer), and CH-π interactions account for the outstanding adsorption performance of these ZTCs. This work provides a quick procedure to computationally screen promising ZTCs for siloxane removal, and help guide future experimental and theoretical investigations.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    A. Divsalar, H. Divsalar, M.N. Dods, R.W. Prosser, T.T. Tsotsis, Ind. Eng. Chem. Res. 58(2019) 16502.
    [2]
    B. Tansel, S.C. Surita, Waste Manag. 96(2019) 121-127.
    [3]
    C.-U. Bak, C.-J. Lim, J.-G. Lee, Y.-D. Kim, W.-S. Kim, Separ. Purif. Technol. 209(2019) 542-549.
    [4]
    C. Rauert, T. Harner, J.K. Schuster, A. Eng, G. Fillmann, L.E. Castillo, O. Fentanes, M.N.V. Ibarra, K.S. Miglioranza, I.M. Rivadeneira, Environ. Sci. Technol. 52(2018) 7240-7249.
    [5]
    E. Santos-Clotas, A. Cabrera-Codony, B. Ruiz, E. Fuente, M.J. Martín, Bioresour. Technol. 275(2019) 207-215.
    [6]
    A.S. Calbry-Muzyka, A. Gantenbein, J. Schneebeli, A. Frei, A.J. Knorpp, T.J. Schildhauer, S.M. Biollaz, Chem. Eng. J. 360(2019) 577-590.
    [7]
    Y. Lu, T. Yuan, W. Wang, K. Kannan, Environ. Pollut. 159(2011) 3522-3528.
    [8]
    L. Zhi, L. Xu, X. He, C. Zhang, Y. Cai, Sci. Total Environ. 631(2018) 879-886.
    [9]
    J. Velicogna, E. Ritchie, J. Princz, M.-E. Lessard, R. Scroggins, Chemosphere 87(2012) 77-83.
    [10]
    V.T.L. Tran, P. Gélin, C. Ferronato, P. Mascunan, V. Rac, J.-M. Chovelon, G. Postole, Chem. Eng. J. 371(2019) 821-832.
    [11]
    A.A. Bletsou, A.G. Asimakopoulos, A.S. Stasinakis, N.S. Thomaidis, K. Kannan, Environ. Sci. Technol. 47(2013) 1824-1832.
    [12]
    C. Sparham, R.V. Egmond, S. O'connor, C. Hastie, M. Whelan, R. Kanda, O. Franklin, J. Chromatogr, A 1212(2008) 124-129.
    [13]
    W.J. Hong, H. Jia, C. Liu, Z. Zhang, Y. Sun, Y.F. Li, Environ. Pollut. 191(2014) 175-181.
    [14]
    S. Genualdi, T. Harner, Y. Cheng, M. Macleod, K.M. Hansen, R. Van Egmond, M. Shoeib, S.C. Lee, Environ. Sci. Technol. 45(2011) 3349-3354.
    [15]
    C. Sánchez-Brunete, E. Miguel, B. Albero, J.L. Tadeo, J. Chromatogr, A 1217(2010) 7024-7030.
    [16]
    E.C. Tuazon, S.M. Aschmann, R. Atkinson, Environ. Sci. Technol. 34(2000) 1970-1976.
    [17]
    J.A. Rutz, J.R. Schultz, C.M. Kuo, H.E. Cole, S. Manuel, M. Curtis, P.R. Jones, O.D. Sparkman, J.T. Mccoy, in:41st International Conference on Environmental Systems, vol. 17, AIAA, Portland, Oregon, 2011, p. 5154.
    [18]
    T. Rector, C. Metselaar, B. Peyton, J. Steele, W. Michalek, E. Bowman, M. Wilson, D. Gazda, L. Carter, in:44th International Conference on Environmental Systems, AIAA, Tucson Arizona, 2014.
    [19]
    L. Carter, J. Perry, M.J. Kayatin, M. Wilson, G.J. Gentry, E. Bowman, O. Monje, T. Rector, J. Steele, in:45th International Conference on Environmental Systems, AIAA, Bellevue, Washington, 2015.
    [20]
    J.A. Rutz, J.R. Schultz, C.M. Kuo, M. Curtis, P.R. Jones, O.D. Sparkman, J.T. Mccoy, AIAA Technical Paper. (2011) 1021758.
    [21]
    D.L. Carter, E.M. Bowman, M.E. Wilson, T.J. Rector, 43rd International Conference on Environmental Systems. (2013) 3510.
    [22]
    D.L. Carter, B. Tobias, N.Y. Orozco, 43rd International Conference on Environmental Systems. (2013) 3509.
    [23]
    T. Rector, C. Metselaar, B. Peyton, J. Steele, W. Michalek, E. Bowman, M. Wilson, D. Gazda, L. Carter, An Evaluation of Technology to Remove Problematic Organic Compounds from the International Space Station Potable Water (2014).
    [24]
    D.-G. Wang, M. Aggarwal, T. Tait, S. Brimble, G. Pacepavicius, L. Kinsman, M. Theocharides, S.A. Smyth, M. Alaee, Water Res. 72(2015) 209-217.
    [25]
    J. Sanchís, E. Martínez, A. Ginebreda, M. Farré, D. Barceló, Sci. Total Environ. 443(2013) 530-538.
    [26]
    M.M. Coggon, B.C. Mcdonald, A. Vlasenko, P.R. Veres, F.O. Bernard, A.R. Koss, B. Yuan, J.B. Gilman, J. Peischl, K.C. Aikin, Environ. Sci. Technol. 52(2018) 5610-5618.
    [27]
    L. Xu, S. Xu, L. Zhi, X. He, C. Zhang, Y. Cai, Environ. Sci. Technol. 51(2017) 12337-12346.
    [28]
    L. Zhi, L. Xu, Y. Qu, C. Zhang, D. Cao, Y. Cai, Environ. Sci. Technol. 52(2018) 12235-12243.
    [29]
    X. Wang, J. Schuster, K.C. Jones, P. Gong, Atmos. Chem. Phys. 18(2018) 8745-8755.
    [30]
    I.S. Krogseth, X. Zhang, Y.D. Lei, F. Wania, K. Breivik, Environ. Sci. Technol. 47(2013) 4463-4470.
    [31]
    J. Sanchís, A. Cabrerizo, C. Galbán-Malagón, D. Barceló, M. Farré, J. Dachs, Environ. Sci. Technol. 49(2015) 4415-4424.
    [32]
    J.V. Sousa, P.C. Mcnamara, A.E. Putt, M.W. Machado, D.C. Surprenant, J.L. Hamelink, D.J. Kent, E.M. Silberhorn, J.F. Hobson, Environ. Toxicol. Chem Int. J. 14(1995) 1639-1647.
    [33]
    M. Tong, Y. Lan, Q. Yang, C. Zhong, Green Energy Environ. 3(2018) 107-119.
    [34]
    B. Wang, L.H. Xie, X. Wang, X.M. Liu, J. Li, J.R. Li, Green Energy Environ. 3(2018) 191-228.
    [35]
    S. Xu, B. Kropscott, Anal. Chem. 84(2012) 1948-1955.
    [36]
    S. Lin, Y. Wang, Y. Zhao, L. Pericchi, A.J. Hernandez-Maldonado, Z. Chen, J. Mater, Chem. A 8(2020) 3228-3237.
    [37]
    X. Wei, Y. Wang, A.J. Hernández-Maldonado, Z. Chen, Green Energy Environ. 2(2017) 363-369.
    [38]
    H. Nishihara, T. Kyotani, Adv. Mater. 24(2012) 4473-4498.
    [39]
    W. Gu, G. Yushin, Wires. Energy Environ. 3(2014) 424-473.
    [40]
    T. Roussel, A. Didion, R.J.-M. Pellenq, R. Gadiou, C. Bichara, C. VixGuterl, J. Phys, Chem. C 111(2007) 15863-15876.
    [41]
    H. Lee, K. Kim, S.H. Kang, Y. Kwon, J.H. Kim, Y.K. Kwon, R. Ryoo, J.Y. Park, Sci. Rep. 7(2017) 1-9.
    [42]
    E. Braun, Y. Lee, S.M. Moosavi, S. Barthel, R. Mercado, I.A. Baburin, D.M. Proserpio, B. Smit, Proc. Natl. Acad. Sci. 115(2018) E8116-E8124.
    [43]
    H. Nishihara, H. Fujimoto, H. Itoi, K. Nomura, H. Tanaka, M.T. Miyahara, P.A. Bonnaud, R. Miura, A. Suzuki, N. Miyamoto, Carbon 129(2018) 854-862.
    [44]
    K. Nueangnoraj, H. Nishihara, K. Imai, H. Itoi, T. Ishii, M. Kiguchi, Y. Sato, M. Terauchi, T. Kyotani, Carbon 62(2013) 455-464.
    [45]
    H. Nishihara, Q.-H. Yang, P.-X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martínez-Alonso, J.M. Tascón, Y. Sato, Carbon. 47(2009) 1220-1230.
    [46]
    K. Kim, T. Lee, Y. Kwon, Y. Seo, J. Song, J.K. Park, H. Lee, J.Y. Park, H. Ihee, S.J. Cho, Nature 535(2016) 131.
    [47]
    J. Parmentier, F.O. Gaslain, O. Ersen, T.A. Centeno, L.A. Solovyov, Langmuir 30(2014) 297-307.
    [48]
    I. Accelrys, Accelrys Software Inc. (2010).
    [49]
    W.K. Hastings, Biometrika 57(1970) 97-109.
    [50]
    H. Sun, J. Phys, Chem. B 102(1998) 7338-7364.
    [51]
    H. Sun, P. Ren, J. Fried, Comput. Theor. Polym. Sci. 8(1998) 229-246.
    [52]
    B. Delley, J. Chem, Phys. 92(1990) 508-517.
    [53]
    B. Delley, J. Chem, Phys. 113(2000) 7756-7764.
    [54]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865.
    [55]
    S. Grimme, J. Comput, Chem. 27(2006) 1787-1799.
    [56]
    S. Nam, W. Namkoong, J.-H. Kang, J.-K. Park, N. Lee, Waste Manag. 33(2013) 2091-2098.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return