Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Denghui Wang, Hui Li, Qi Yao, Shien Hui, Yanqing Niu. Assisting effect of Al2O3 on MnOx for NO catalytic oxidation. Green Energy&Environment, 2021, 6(6): 903-909. doi: 10.1016/j.gee.2020.07.005
Citation: Denghui Wang, Hui Li, Qi Yao, Shien Hui, Yanqing Niu. Assisting effect of Al2O3 on MnOx for NO catalytic oxidation. Green Energy&Environment, 2021, 6(6): 903-909. doi: 10.1016/j.gee.2020.07.005

Assisting effect of Al2O3 on MnOx for NO catalytic oxidation

doi: 10.1016/j.gee.2020.07.005
  • Various Mn-based catalysts for NO oxidation were prepared using MnOx as active compound, while TiO2 and Al2O3 were adopted as catalyst support. The performance of the catalysts was tested to study the effect of support on Mn-based catalyst activity. Performance of the catalysts followed as Mn0.4/Al > Mn0.2/Al > Mn0.4/Ti > Mn0.2/Ti > MnOx > Al2O3 on the whole, indicating the synergism of MnOx and Al2O3 for NO catalytic oxidation. Results were analyzed according to characterization data. Adsorbed oxygen on catalyst rather than lattice oxygen was detected as the active oxidizer for NO oxidation. As catalyst support, Al2O3 provided more sites to carry surface adsorbed oxygen than TiO2, resulting in the presence of more active oxygen on MnOx/Al2O3 than on MnOx/TiO2. Moreover, MnOx/Al2O3 possessed high surface area and pore volume, which greatly benefited the adsorption of NO on catalyst and further favored the oxidation of NO by active oxygen. All these advantages helped Mn0.4/Al exhibited the best catalytic efficiency.

     

  • Current address: NO.28 Xianning West Road, Xi'an, 710049, China.
  • loading
  • [1]
    Z. Zhou, X. Liu, Y. Hu, J. Xu, X.E. Cao, Z. Liao, M. Xu, Fuel 225(2018) 134-139.
    [2]
    G. Li, B. Wang, Q. Sun, W.Q. Xu, Z. Ma, H. Wang, D. Zhang, J. Zhou, Green Energy Environ. 4(2019) 470-482.
    [3]
    J. Tian, K. Zhang, W. Wang, F. Wang, J. Dan, S. Yang, J. Zhang, B. Dai, F. Yu, Green Energy Environ. 4(2019) 311-321.
    [4]
    S. Zhu, Q. Lyu, J. Zhu, J. Energy Inst. 92(2019) 1388-1398.
    [5]
    S. Li, Y. Ge, X. Wei, Fuel 224(2018) 235-240.
    [6]
    G. Madia, M. Koebel, M. Elsener, A. Wokaun, Ind. Eng. Chem. Res. 41(2002) 3512-3517.
    [7]
    G. Madia, M. Elsener, M. Koebel, F. Raimondi, A. Wokaun, Appl. Catal. B Environ. 39(2002) 181-190.
    [8]
    P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Prog. Energy Combust. 67(2018) 31-68.
    [9]
    Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Fuel 181(2016) 358-365.
    [10]
    M.H. Kim, S.W. Park, Catal. Commun. 86(2016) 82-85.
    [11]
    M.H. Kim, H.S. Lee, Res. Chem. Intermed. 42(2015) 171-184.
    [12]
    X. Wang, X. Du, L. Zhang, G. Yang, Y. Chen, J. Ran, Energy Fuels 32(2018) 6990-6994.
    [13]
    Z. An, Y. Zhuo, C. Xu, C. Chen, Chin. J. Catal. 35(2014) 120-126.
    [14]
    C. Chen, Y. Cao, S. Liu, J. Chen, W. Jia, Fuel Process. Technol. 181(2018) 268-278.
    [15]
    H. Chen, Y. Wang, Y.K. Lyu, Mol. Catal. 454(2018) 21-29.
    [16]
    M.P. Ruggeri, I. Nova, E. Tronconi, J.A. Pihl, T.J. Toops, W. Partridge, Appl. Catal. B Environ. 166-167(2015) 181-192.
    [17]
    P.S. Metkar, V. Balakotaiah, M.P. Harold, Catal. Today 184(2012) 115-128.
    [18]
    Z. Wu, N. Tang, L. Xiao, Y. Liu, H. Wang, J. Colloid Interface Sci. 352(2010) 143-148.
    [19]
    Z. Zi, B. Zhu, Y. Sun, Q. Fang, T. Ge, Environ. Sci. Pollut. Res. Int. 26(2019) 10117-10126.
    [20]
    D. Fang, F. He, J. Xie, J. Energy Inst. 92(2019) 319-331.
    [21]
    S. Zhang, Y. Zhao, J. Yang, Y. Zhang, P. Sun, X. Yu, J. Zhang, C. Zheng, Fuel Process. Technol. 166(2017) 282-290.
    [22]
    X. Chen, P. Wang, P. Fang, T. Ren, Y. Liu, C. Cen, H. Wang, Z. Wu, Fuel Process. Technol. 167(2017) 221-228.
    [23]
    H. Wang, H. Chen, Y. Wang, Y.K. Lyu, Chem. Eng. J. 361(2019) 1161-1172.
    [24]
    N. Tang, Y. Liu, H. Wang, Z. Wu, J. Phys. Chem. C 115(2011) 8214-8220.
    [25]
    P. Paul, P. Bhanja, N. Salam, U. Mandi, A. Bhaumik, S.M. Alam, S.M. Islam, J. Colloid Interface Sci. 493(2017) 206-217.
    [26]
    M.K. Kim, P.S. Kim, H.J. Kwon, I.S. Nam, B.K. Cho, S.H. Oh, Chem. Eng. J. 209(2012) 280-292.
    [27]
    Z. Zhou, X. Liu, J. Xu, X.E. Cao, X. Zhu, Fuel Process. Technol. 187(2019) 16-20.
    [28]
    D. Wang, Q. Yao, C. Mou, S. Hui, Y. Niu, Fuel 254(2019).
    [29]
    D. Wang, Q. Yao, S. Hui, Y. Niu, Fuel 251(2019) 23-29.
    [30]
    D. Wang, Q. Yao, S. Hui, Y. Niu, Fuel 234(2018) 650-655.
    [31]
    B. Hao, Y. Sun, Q. Shen, X. Zhang, Z. Zhang, Chemosphere 243(2020) 125406.
    [32]
    Y. Niu, T. Shang, S. Hui, X. Zhang, Y. Lei, Y. Lv, S. Wang, Fuel 185(2016) 316-322.
    [33]
    J. Chen, M. Shen, X. Wang, G. Qi, J. Wang, W. Li, Appl. Catal. B Environ. 134-135(2013) 251-257.
    [34]
    K. Silas, W.A.W.A.K. Ghani, T.S.Y. Choong, U. Rashid, Fuel Process. Technol. 180(2018) 155-165.
    [35]
    W. Wang, R. Guo, W. Pan, G. Hu, J. Rare Earths 36(2018) 588-593.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (198) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return