Volume 6 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Shenghong Dong, Mingzhe Chen, Jiarui Zhang, Jinzhu Chen, Yisheng Xu. Visible-light-induced hydrogenation of biomass-based aldehydes by graphitic carbon nitride supported metal catalysts. Green Energy&Environment, 2021, 6(5): 715-724. doi: 10.1016/j.gee.2020.07.004
Citation: Shenghong Dong, Mingzhe Chen, Jiarui Zhang, Jinzhu Chen, Yisheng Xu. Visible-light-induced hydrogenation of biomass-based aldehydes by graphitic carbon nitride supported metal catalysts. Green Energy&Environment, 2021, 6(5): 715-724. doi: 10.1016/j.gee.2020.07.004

Visible-light-induced hydrogenation of biomass-based aldehydes by graphitic carbon nitride supported metal catalysts

doi: 10.1016/j.gee.2020.07.004
  • The plasmonic photocatalyst of Pd supported on graphitic carbon nitride (Pd/g-C3N4) exhibits excellent catalytic activity in photo-induced hydrogenation of biomass-based aldehydes with environmental benign reagents of formic acid (HCOOH) as proton source and triethylamine (TEA) as sacrificial electron donator. The chemical and configurational properties of the Pd/g-C3N4 were systematically analyzed with XRD, TEM and XPS. Under optimized conditions, 27% yield of furfuryl alcohol with the corresponding turnover frequency (TOF) around 3.72 h-1 were obtained from furfural and TEA-HCOOH under visible-light irradiation by using Pd/g-C3N4. Our research additionally reveals that Pd atom is the true catalytic active site for the hydrogenation and the photo-promoted reduction mainly occurs through noble metal nanoparticles (NPs)-induced effect of surface plasmon resonance (SPR). The photo-catalytic system of Pd/g-C3N4 thus demonstrates a green and effective method for the hydrogenation of biomass-based aldehydes with sustainable solar energy as a driven force.

     

  • S.D. and M.C. contributed equally to this work.
  • loading
  • [1]
    G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106(2006) 4044-4098.
    [2]
    E.S.K. Why, H.C. Ong, H.V. Lee, Y.Y. Gan, W.-H. Chen, C.T. Chong, Energy Convers. Manag. 199(2019) 112015.
    [3]
    R. Calvo-Serrano, M. Guo, C. Pozo, A. Gal an-Martín, G. Guill enGos albez, ACS Sustain. Chem. Eng. 7(2019) 10570-10582.
    [4]
    P.-L. Kang, C. Shang, Z.-P. Liu, J. Am. Chem. Soc. 141(2019) 20525-20536.
    [5]
    W. Hui, Y. Zhou, Y. Dong, Z.-J. Cao, F.-Q. He, M.-Z. Cai, D.-J. Tao, Green Energy Environ. 4(2019) 49-55.
    [6]
    I. Scodeller, S. Mansouri, D. Morvan, E. Muller, K.D.O. Vigier, R. Wischert, F. J er^ ome, Angew. Chem. Int. Ed. 57(2018) 10510-10514.
    [7]
    F. Tang, L. Wang, M.D. Walle, A. Mustapha, Y.-N. Liu, J. Catal. 383(2020) 172-180.
    [8]
    A.J.G. Zarbin, R. Bertholdo, M.a.F.C. Oliveira, Carbon 40(2002) 2413-2422.
    [9]
    R. Bringu e, E. Ramírez, M. Iborra, J. Tejero, F. Cunill, Fuel 257(2019) 116010.
    [10]
    J. Zhang, K. Dong, W. Luo, H. Guan, ACS Omega 3(2018) 6206-6216.
    [11]
    W. Gong, C. Chen, Y. Zhang, H. Zhou, H. Wang, H. Zhang, Y. Zhang, G. Wang, H. Zhao, ACS Sustain. Chem. Eng. 5(2017) 2172-2180.
    [12]
    B.M. Nagaraja, A.H. Padmasri, B. David Raju, K.S. Rama Rao, J. Mol. Catal. A Chem. 265(2007) 90-97.
    [13]
    N. Pino, S. Sitthisa, Q. Tan, T. Souza, D. L opez, D.E. Resasco, J. Catal. 350(2017) 30-40.
    [14]
    N.S. Date, A.M. Hengne, K.W. Huang, R.C. Chikate, C.V. Rode, Green Chem. 20(2018) 2027-2037.
    [15]
    Z. Jiang, W. Wan, Z. Lin, J. Xie, J.G. Chen, ACS Catal. 7(2017) 5758-5765.
    [16]
    O.F. Aldosari, S. Iqbal, P.J. Miedziak, G.L. Brett, D.R. Jones, X. Liu, J.K. Edwards, D.J. Morgan, D.K. Knight, G.J. Hutchings, Catal. Sci. Technol. 6(2016) 234-242.
    [17]
    S. Sitthisa, D.E. Resasco, Catal. Lett. 141(2011) 784-791.
    [18]
    A. Bahuguna, A. Kumar, V. Krishnan, Asian J. Org. Chem. 8(2019) 1263-1305.
    [19]
    A. Bahuguna, A. Kumar, S. Kumar, T. Chhabra, V. Krishnan, ChemCatChem 10(2018) 3121-3132.
    [20]
    T. Chhabra, A. Bahuguna, S.S. Dhankhar, C.M. Nagaraja, V. Krishnan, Green Chem. 21(2019) 6012-6026.
    [21]
    S. Kumar, A. Kumar, A. Bahuguna, V. Sharma, V. Krishnan, Beilstein J. Nanotechnol. 8(2017) 1571-1600.
    [22]
    X. Yu, T. Fan, W. Chen, Z. Chen, Y. Dong, H. Fan, W. Fang, X. Yi, Carbon 144(2019) 649-658.
    [23]
    Y. Gong, M. Li, H. Li, Y. Wang, Green Chem. 17(2015) 715-736.
    [24]
    S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27(2015) 2150-2176.
    [25]
    X. Hu, X. Zeng, Y. Liu, J. Lu, S. Yuan, Y. Yin, J. Hu, D.T. Mccarthy, X. Zhang, Appl. Catal. B Environ. 268(2020) 118466.
    [26]
    J. Pan, Z. Dong, B. Wang, Z. Jiang, C. Zhao, J. Wang, C. Song, Y. Zheng, C. Li, Appl. Catal. B Environ. 242(2019) 92-99.
    [27]
    C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv, Appl. Catal. B Environ. 268(2020) 118738.
    [28]
    F. Goettmann, A. Thomas, M. Antonietti, Angew. Chem. Int. Ed. 46(2007) 2717-2720.
    [29]
    A. Kumar, A. Kumar, G. Sharma, A.a.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Chem. Eng. J. 334(2018) 462-478.
    [30]
    Y. Tian, L. Zhou, Q. Zhu, J. Lei, L. Wang, J. Zhang, Y. Liu, Nanoscale 11(2019) 20638-20647.
    [31]
    J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, ACS Appl. Mater. Interfaces 7(2015) 9630-9637.
    [32]
    H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B Environ. 129(2013) 182-193.
    [33]
    J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small 13(2017) 1603938.
    [34]
    M. Xie, J. Tang, L. Kong, W. Lu, V. Natarajan, F. Zhu, J. Zhan, Chem. Eng. J. 360(2019) 1213-1222.
    [35]
    J. Hu, P. Zhang, W. An, L. Liu, Y. Liang, W. Cui, Appl. Catal. B Environ. 245(2019) 130-142.
    [36]
    L. Jing, Y. Xu, Z. Chen, M. He, M. Xie, J. Liu, H. Xu, S. Huang, H. Li, ACS Sustain. Chem. Eng. 6(2018) 5132-5141.
    [37]
    C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Adv. Funct. Mater. 27(2017) 1604328.
    [38]
    W. Zou, B. Deng, X. Hu, Y. Zhou, Y. Pu, S. Yu, K. Ma, J. Sun, H. Wan, L. Dong, Appl. Catal. B Environ. 238(2018) 111-118.
    [39]
    Q. Xiang, J. Yu, M. Jaroniec, J. Phys, Chem. C 115(2011) 7355-7363.
    [40]
    Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, Small 9(2013) 3336-3344.
    [41]
    L. Zhang, X. He, X. Xu, C. Liu, Y. Duan, L. Hou, Q. Zhou, C. Ma, X. Yang, R. Liu, Appl. Catal. B Environ. 203(2017) 1-8.
    [42]
    X. Zhang, L. Yu, C. Zhuang, T. Peng, R. Li, X. Li, ACS Catal. 4(2014) 162-170.
    [43]
    J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S.-Z. Qiao, Adv. Mater. 30(2018) 1800128.
    [44]
    Y. Di, X. Wang, A. Thomas, M. Antonietti, ChemCatChem 2(2010) 834-838.
    [45]
    Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 53(2014) 11926-11930.
    [46]
    J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. 3(2012) 1-7.
    [47]
    Y. Ide, M. Matsuoka, M. Ogawa, J. Am. Chem. Soc. 132(2010) 16762-16764.
    [48]
    Z. Yu, S.S.C. Chuang, Appl. Catal. B Environ. 83(2008) 277-285.
    [49]
    Z. Huang, Y. Zhang, H. Dai, Y. Wang, C. Qin, W. Chen, Y. Zhou, S. Yuan, J. Catal. 378(2019) 331-340.
    [50]
    Q. Yang, Q. Xu, S.-H. Yu, H.-L. Jiang, Angew. Chem. Int. Ed. 55(2016) 3685-3689.
    [51]
    S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10(2011) 911-921.
    [52]
    M.M. Shahjamali, M. Bosman, S. Cao, X. Huang, S. Saadat, E. Martinsson, D. Aili, Y.Y. Tay, B. Liedberg, S.C.J. Loo, Adv. Funct. Mater. 22(2012) 849-854.
    [53]
    P. Wang, B. Huang, Y. Dai, M.-H. Whangbo, Phys. Chem. Chem. Phys. 14(2012) 9813-9825.
    [54]
    X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 131(2009) 1680-1681.
    [55]
    O. Fontelles-Carceller, M.J. Mun eOz-Batista, M. Fern aNdez-García, A. Kubacka, ACS Appl. Mater. Interfaces 8(2016) 2617-2627.
    [56]
    T. Cao, M. Cai, L. Jin, X. Wang, J. Yu, Y. Chen, L. Dai, New J. Chem. 43(2019) 16169-16175.
    [57]
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8(2009) 76-80.
    [58]
    X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 21(2009) 1609-1612.
    [59]
    Z.-T. Wang, J.-L. Xu, H. Zhou, X. Zhang, Rare Met. 38(2019) 459-467.
    [60]
    B. Yue, Q. Li, H. Iwai, T. Kako, J. Ye, Sci. Technol. Adv. Mater. 12(2011) 034401.
    [61]
    A.M.R. Galletti, C. Antonetti, A.M. Venezia, G. Giambastiani, Appl. Catal. Gen. 386(2010) 124-131.
    [62]
    J. Chen, R. Liu, Y. Guo, L. Chen, H. Gao, ACS Catal. 5(2015) 722-733.
    [63]
    C. Hu, X. Zhai, Y. Zhao, K. Bian, J. Zhang, L. Qu, H. Zhang, H. Luo, Nanoscale 6(2014) 2768-2775.
    [64]
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26(2010) 3894-3901.
    [65]
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlöogl, J.M. Carlsson, J. Mater. Chem. 18(2008) 4893-4908.
    [66]
    C. Chang, Y. Fu, M. Hu, C. Wang, G. Shan, L. Zhu, Appl. Catal. B:Environ. 142(2013) 553-560.
    [67]
    J.P.H. Li, X. Zhou, Y. Pang, L. Zhu, E.I. Vovk, L. Cong, A.P. van Bavel, S. Li, Y. Yang, Phys. Chem. Chem. Phys. 21(2019) 22351-22358.
    [68]
    L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Nanoscale 5(2013) 9374-9382.
    [69]
    Y. Guo, J. Chen, RSC Adv. 6(2016) 101968-101973.
    [70]
    T. Maschmeyer, M. Che, Angew. Chem. Int. Ed. 49(2010) 1536-1539.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (281) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return