Volume 6 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Kun Yang, Zhenhua Gu, Yanhui Long, Shen Lin, Chunqiang Lu, Xing Zhu, Hua Wang, Kongzhai Li. Hydrogen production via chemical looping reforming of coke oven gas. Green Energy&Environment, 2021, 6(5): 678-692. doi: 10.1016/j.gee.2020.06.027
Citation: Kun Yang, Zhenhua Gu, Yanhui Long, Shen Lin, Chunqiang Lu, Xing Zhu, Hua Wang, Kongzhai Li. Hydrogen production via chemical looping reforming of coke oven gas. Green Energy&Environment, 2021, 6(5): 678-692. doi: 10.1016/j.gee.2020.06.027

Hydrogen production via chemical looping reforming of coke oven gas

doi: 10.1016/j.gee.2020.06.027
  • Coke oven gas (COG) is one of the most important by-products in steel industry, and the conversion of COG to value-added products has attracted much attention from both economic and environmental views. In this work, we use the chemical looping reforming technology to produce pure H2 from COG. A series of La1-xSrxFeO3 (x=0, 0.2, 0.3, 0.4, 0.5, 0.6) perovskite oxides were prepared as oxygen carriers for this purpose. The reduction behaviors of La1-xSrxFeO3 perovskite by different reducing gases (H2, CO, CH4 and the mixed gases) are investigated to discuss the competition effect of different components in COG for reacting with the oxygen carriers. The results show that reduction temperatures of H2 and CO are much lower than that of CH4, and high temperatures (> 800℃) are requested for selective oxidation of methane to syngas. The co-existence of CO and H2 shows weak effect on the equilibrium of methane conversion at high temperatures, but the oxidation of methane to syngas can inhibit the consumption of CO and H2. The doping of suitable amounts of Sr in LaFeO3 perovskite (e.g., La0.5Sr0.5FeO3) significantly promotes the activity for selective oxidation of methane to syngas and inhibits the formation of carbon deposition, obtaining both high methane conversion in the COG oxidation step and high hydrogen yield in the water splitting step. The La0.5Sr0.5FeO3 shows the highest methane conversion (67.82%), hydrogen yield (3.34 mmol g-1) and hydrogen purity (99.85%). The hydrogen yield in water splitting step is treble as high as the hydrogen consumption in reduction step. These results reveal that chemical looping reforming of COG to produce pure H2 is feasible, and an O2-assistant chemical looping reforming process can further improves the redox stability of oxygen carrier.

     

  • loading
  • [1]
    Q. Yi, M.H. Gong, Y. Huang, J. Feng, Y.H. Hao, J.L. Zhang, W.Y. Li, Energy 112(2016) 618-628.
    [2]
    D. Xiang, S. Zhao, Energy Convers. Manage. 172(2018) 1-8.
    [3]
    R. Razzaq, C. Li, S. Zhang, Fuel 113(2013) 287-299.
    [4]
    A.D. Hernandez, N. Kaisalo, P. Simell, M. Scarsella, Appl. Catal. B Environ. 258(2019) 117977.
    [5]
    J.M. Bermudez, A. Arenillas, R. Luque, J.A. Menendez, Fuel Process. Technol. 110(2013) 150-159.
    [6]
    J. Li, X. Ma, H. Liu, X. Zhang, J. Clean. Prod. 185(2018) 299-308.
    [7]
    D. Xiang, W. Huang, M. Cai, Y. Cao, P. Li, R. Shu, Energy Convers. Manage.190(2019) 34-41.
    [8]
    H. Xie, Q. Qin, Q. Yu, Energy Technology (2018) 17-26.
    [9]
    Z. Yang, Y. Zhang, X. Wang, Y. Zhang, X. Lu, W. Ding, Energy Fuels 24(2010) 785-788.
    [10]
    J. Shen, Z.Z. Wang, Energy Fuels 21(2007) 3588-3592.
    [11]
    Y. Chen, R. Peng, Y. Xiao, B. Zhang, W. Yan, Y. Zhao, J. Zhang, Energ Fuels 33(2019) 11420-11438.
    [12]
    W. Yao, H. Cheng, H. Zhao, X. Lu, X. Zou, S. Li, C. Li, J. Membr. Sci. 504(2016) 251-262.
    [13]
    Y. Zhang, T. Liu, J. Zhang, C. Wu, X. Lu, W. Ding, J. Membr. Sci. 533(2017) 19-27.
    [14]
    C. Wang, C. Liu, W. Fu, Z. Bao, J. Zhang, W. Ding, K. Chou, Q. Li, Catal. Today 263(2016) 46-51.
    [15]
    G. Li, H. Cheng, H. Zhao, X. Lu, Q. Xu, C. Wu, Catal. Today 318(2018) 46-51.
    [16]
    P. Corbo, F. Migliardini, Int. J. Hydrogen Energy 32(2007) 55-66.
    [17]
    T. Song, H. Zhao, Y. Hu, N. Sun, H. Zhang, Chinese Chem. Letters (2019).
    [18]
    L. Qiao, M. Song, A. Geng, S. Yao, Chinese Chem. Letters 30(2019) 1273-1276.
    [19]
    G. Zhang, Y. Dong, M. Feng, Y. Zhang, W. Zhao, H. Cao, Chem. Eng. J. 156(2010) 519-523.
    [20]
    P. Diemer, H.J. Killich, K. Knop, H.B. Lungen, M. Reinke, P. Schmole, 2nd Int. Meet. Ironmak. and 1st Int. Symp. Iron Ore, (2004) 433-446.
    [21]
    X. Zhang, H. Jin, Appl. Energy 112(2013) 800-807.
    [22]
    L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J.L. Gong, Nat. Rev. Chem. 2(2018) 349-364.
    [23]
    X. Zhu, Q. Imtiaz, F. Donat, C.R. Muller, F. Li, Energy Environ. Sci. (2020).
    [24]
    Y. Long, K. Li, Z. Gu, X. Zhu, Y. Wei, C. Lu, S. Lin, K. Yang, X. Cheng, D. Tian, Chem. Eng. J. 388(2020) 124190.
    [25]
    L. Wang, X. Feng, L. Shen, S. Jiang, H. Gu, Energy 179(2019) 1205-1216.
    [26]
    H. Fang, L. Haibin, Z. Zengli, Int. J. Chem. Eng. (2009) 1-16.
    [27]
    Y. Liu, L. Qin, Z. Cheng, J.W. Goetze, F. Kong, J.A. Fan, L.S. Fan, Nat. Commun. 10(2019) 5503.
    [28]
    C. Lu, K. Li, H. Wang, X. Zhu, Y. Wei, M. Zheng, C. Zeng, Appl. Energy 211(2018) 1-14.
    [29]
    C. Lu, K. Li, X. Zhu, Y. Wei, L. Li, M. Zheng, B. Fan, F. He, H. Wang, Appl. Energy 261(2020) 114437.
    [30]
    X.L. Sang, K.Z. Li, H. Wang, Y.G. Wei, Rare metals 033(2014) 230-238.
    [31]
    I.S. Metcalfe, B. Ray, C. Dejoie, W. Hu, C. de Leeuwe, C. Dueso, F.R. Garcia-Garcia, C.M. Mak, E.I. Papaioannou, C.R. Thompson, J.S.O. Evans, Nat. Chem. 11(2019) 638-643.
    [32]
    D.W. Zeng, S. Peng, C. Chen, J.M. Zeng, S. Zhang, H.Y. Zhang, R. Xiao, Int. J. Hydrogen Energ 41(2016) 22711-22721.
    [33]
    R.F. Pachler, K. Mayer, S. Penthor, M. Kollerits, H. Hofbauer, Int. J. Greenh. Gas Control 71(2018) 86-94.
    [34]
    R.F. Pachler, S. Penthor, K. Mayer, H. Hofbauer, Fuel 241(2019) 432-441.
    [35]
    C.R. Forero, P. Gayan, F. Garcia-Labiano, L.F. de Diego, A. Abad, J. Adanez, Int. J. Greenh. Gas Control 4(2010) 762-770.
    [36]
    G. Deng, K. Li, Z. Gu, X. Zhu, Y. Wei, X. Cheng, H. Wang, Chem. Eng. J. 341(2018) 588-600.
    [37]
    F. He, X. Li, K. Zhao, Z. Huang, G. Wei, H. Li, Fuel 108(2013) 465-473.
    [38]
    D. Li, R. Xu, Z. Gu, X. Zhu, S. Qing, K. Li, Energy Techno. (2019) 1900925.
    [39]
    K. Zhao, F. He, Z. Huang, G.Q. Wei, A.Q. Zheng, Appl. Energy 168(2016) 193-203.
    [40]
    F. He, J. Chen, S. Liu, Z. Huang, G. Wei, G. Wang, Y. Cao, K. Zhao, Int. J. Hydrogen Energy 44(2019) 10265-10276.
    [41]
    S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 114(2014) 10292-10368.
    [42]
    X. Zhu, K. Li, L.M. Neal, F. Li, ACS Catal. 8(2018) 8213-8236.
    [43]
    X.U. Junfeng, J. Liu, Z. Zhao, J. Zheng, G. Zhang, A. Duan, G. Jiang, Catal. Today 153(2010) 136-142.
    [44]
    M. Tang, L. Xu, M. Fan, Appl. Energy 151(2015) 143-156.
    [45]
    X.P. Dai, R.J. Li, C.C. Yu, Z.P. Hao, J. Phys. Chem. B 110(2006) 22525-22531
    [46]
    X.P. Dai, Q. Wu, R.J. Li, C.C. Yu, Z.P. Hao, J. Phys. Chem. B 110(2006) 25856-25862.
    [47]
    Q.Q. Shen, F. Hunag, M. Tian, Y.Y. Zhu, L. Li, J.H. Wang, X.D. Wang, Acs Catal. 9(2019) 722-731.
    [48]
    F. He, K. Zhao, Z. Huang, X.A. Li, G.Q. Wei, H.B. Li, Chinese J. Catal. 34(2013) 1242-1249
    [49]
    K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, Z. Zhao, Int. J. Hydrogen Energy 39(2014) 3243-3252.
    [50]
    Y.N. Zheng, K.Z. Li, H. Wang, D. Tian, Y.H. Wang, X. Zhu, Y.G. Wei, M. Zheng, Y.M. Luo, Appl. Catal. B Environ. 202(2017) 51-63.
    [51]
    F.H. Taylor, J. Buckeridge, C.R.A. Catlow, Chem. Mater. 29(2017) 8147-8157.
    [52]
    L. Nalbandian, A. Evdou, V. Zaspalis, Int. J. Hydrogen Energy 36(2011) 6657-6670.
    [53]
    N. Galinsky, M. Sendi, L. Bowers, F. Li, Appl. Energy 174(2016) 80-87.
    [54]
    N. Galinsky, A. Mishra, J. Zhang, F. Li, Appl. Energy 157(2015) 358-367.
    [55]
    H. Chang, E. Bjoergum, O. Mihai, J. Yang, H.L. Lein, T. Grande, S. Raaen, Y.A. Zhu, A. Holmen, D. Chen, Acs Catal. (2020) 3707-3719.
    [56]
    C.H. Wang, C.L. Chen, H.S. Weng, Chemosphere 57(2004) 1131-1138.
    [57]
    K. Zhao, H. Fang, H. Zhen, A. Zheng, Z. Zhao, Chinese J. Catal. 35(2014) 1196-1205.
    [58]
    M. Popa, J. Frantti, M. Kakihana, Solid State Ionics Diff. React. 154-155(2002) 437-445.
    [59]
    Y. Wang, J. Zhu, L. Zhang, X. Yang, L. Lu, X. Wang, Mater. Lett. 60(2006) 1767-1770.
    [60]
    M. Hongqin, T. Xin, Z. Huiming, Z. Jiyan, Z. Liu, J. Chinese Rare Earth Soc. 4(2003) 445-448.
    [61]
    E. Symianakis, D. Malko, E. Ahmad, A.S. Mamede, J.F. Paul, N. Harrison, A. Kucernak, J. Phys. Chem. C 119(2015) 12209-12217.
    [62]
    Z. Kun, S. Yang, H. Fang, Z. Huang, W. Guoqiang, A. Zheng, L. Haibin, Z. Zengli, J. Rare Earths 34(2016) 1032-1041.
    [63]
    H. Widatallah, A. Al Rawas, C. Johnson, S. Al Harthi, A. Gismelseed, E. Moore, S. Stewart, J. Nanosci. Nanotechno. 9(2009) 2510-2517.
    [64]
    A. Al Rawas, H. Widatallah, S. Al Harthi, C. Johnson, A. Gismelseed, M. Elzain, A. Yousif, Mater. Res. Bull. 65(2015) 142-148.
    [65]
    L. Wang, Y. Du, P.V. Sushko, M.E. Bowden, K.A. Stoerzinger, S.M. Heald, M.D. Scafetta, T.C. Kaspar, S.A. Chambers, Phys. Rev. Mater. 3(2019) 025401.
    [66]
    X. Zhu, M.Y. Zhang, K.Z. Li, Y.G. Wei, Y. Zheng, J.H. Hu, H. Wang, Chem. Eng. Sci. 179(2018) 92-103.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return