Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Xiangyang Zhu, Dong Qiao, Liangrong Yang, Qinling Bi, Huifang Xing, Shan Ni, Menglei Yuan, Huizhou Liu, Luhai Wang, An Ma. Novel magnetic carbon supported molybdenum disulfide catalyst and its application in residue upgrading. Green Energy&Environment, 2021, 6(6): 952-960. doi: 10.1016/j.gee.2020.06.025
Citation: Xiangyang Zhu, Dong Qiao, Liangrong Yang, Qinling Bi, Huifang Xing, Shan Ni, Menglei Yuan, Huizhou Liu, Luhai Wang, An Ma. Novel magnetic carbon supported molybdenum disulfide catalyst and its application in residue upgrading. Green Energy&Environment, 2021, 6(6): 952-960. doi: 10.1016/j.gee.2020.06.025

Novel magnetic carbon supported molybdenum disulfide catalyst and its application in residue upgrading

doi: 10.1016/j.gee.2020.06.025
  • A novel hybrid material consisted of carbon covered Fe3O4 nanoparticles and MoS2 nanoflower (FCM) was designed and prepared by micelle-assisted hydrothermal methods. Multiple techniques, including X-Ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize it. The results show that FCM has a flower-like morphology with a 330 nm Fe3O4 core as well as 70 nm highly crystalline MoS2 shell. FCM is superparamagnetic with a saturation magnetization of 35 emu g-1. Then hydrocracking of Canadian bitumen residue (CBR) was applied to estimate its catalytic activity. The results show that FCM exhibits superior catalytic hydrocracking activity compared to bulk MoS2 and commercial oil-dispersed Mo(CO)6 by the same Mo loading. Further measurement by elemental analysis, XPS and XRD reveals that the MoS2 nanoflower with abundant catalytic active sites and covered carbon layer with anti-coke ability donate to the superior upgrading performance. Besides, the catalysts can be easily recovered by the external magnetic field. This work provides a novel kind magnetic nanocatalyst which is potential for slurry-phase hydrocracking applications.

     

  • loading
  • [1]
    T. Parsell, S. Yohe, J. Degenstein, T. Jarrell, I. Klein, E. Gencer, B. Hewetson, M. Hurt, J.I. Kim, H. Choudhari, B. Saha, R. Meilan, N. Mosier, F. Ribeiro, W.N. Delgass, C. Chapple, H.I. Kenttämaa, R. Agrawal, M.M. Abu-Omar, Green Chem. 17(2015) 1492-1499.
    [2]
    F. Saleem, K. Zhang, A. Harvey, Chem. Eng. J. 356(2019) 1062-1069.
    [3]
    P. Šimáček, D. Kubička, G. Šebor, M. Pospíšil, Fuel 88(2009) 456-460.
    [4]
    J. Zecevic, G. Vanbutsele, K.P. De Jong, J.A. Martens, Nature 528(2015) 245-254.
    [5]
    C. Martínez, A. Corma, Coord. Chem. Rev. 255(2011) 1558-1580.
    [6]
    A. Tirado, J. Ancheyta, Renew. Energy 148(2020) 790-797.
    [7]
    V.L. Mangesh, S. Padmanabhan, P. Tamizhdurai, S. Narayanan, A. Ramesh, J. Hazard. Mater. 386(2020) 121453.
    [8]
    Y. Wang, Y. Chen, J. He, P. Li, C. Yang, Energy Fuels 24(2010) 1502-1510.
    [9]
    A. Quitian, J. Ancheyta, Energy Fuels 30(2016) 10117-10125.
    [10]
    T.A. Al-Attas, S.A. Ali, M.H. Zahir, Q. Xiong, S.A. Al-Bogami, Z.O. Malaibari, S.A. Razzak, M.M. Hossain, Energy Fuels 33(2019) 7917-7949.
    [11]
    M.S. Rana, V. Sámano, J. Ancheyta, J.A.I. Diaz, Fuel 86(2007) 1216-1231.
    [12]
    R. Sahu, B.J. Song, J.S. Im, Y.P. Jeon, C.W. Lee, J. Ind. Eng. Chem. 27(2015) 12-24.
    [13]
    A. Quitian, J. Ancheyta, Energy Fuels 30(2016) 4419-4437.
    [14]
    M. Kouzu, Y. Kuriki, K. Uchida, K. Sakanishi, Y. Sugimoto, I. Saito, D. Fujii, K. Hirano, Energy Fuels 19(2005) 725-730.
    [15]
    H. Rezaei, X. Liu, S.J. Ardakani, K.J. Smith, M. Bricker, Catal. Today 150(2010) 244-254.
    [16]
    K.H. Kang, G.T. Kim, S. Park, P.W. Seo, H. Seo, C.W. Lee, J. Ind. Eng. Chem. 76(2019) 1-16.
    [17]
    S.-H. Kim, K.-D. Kim, Y.-K. Lee, J. Catal. 347(2017) 127-137.
    [18]
    D. Wang, D. Astruc, Chem. Rev. 114(2014) 6949-6985.
    [19]
    V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111(2011) 3036-3075.
    [20]
    T.D. Nguyen, Nanoscale 5(2013) 9455-9482.
    [21]
    X. Zhu, S. Ni, Q. Bi, L. Yang, H. Xing, H. Liu, Prog. Chem. 31(2019) 381-393.
    [22]
    I. Mochida, K. Sakanishi, R. Sakata, K. Honda, T. Umezawa, Energy Fuels 8(1994) 25-30.
    [23]
    R. Liu, S. Dou, M. Yu, R. Wang, J. Clean. Prod. 168(2017) 1048-1058.
    [24]
    D. Lu, H. Fan, K.K. Kondamareddy, H. Yu, A. Wang, H. Hao, M. Li, J. Shen, ACS Sustain. Chem. Eng. 6(2018) 9903-9911.
    [25]
    S. Sharifvaghefi, Y. Zheng, ChemCatChem 7(2015) 3397-3403.
    [26]
    S. Sharifvaghefi, Y. Zheng, ChemistrySelect 2(2017) 4678-4685.
    [27]
    S. Mukundan, M. Konarova, L. Atanda, Q. Ma, J. Beltramini, Catal. Sci. Technol. 5(2015) 4422-4432.
    [28]
    N. Krishnankutty, M.A. Vannice, J. Catal. 155(1995) 312-326.
    [29]
    A.W. Scaroni, R.G. Jenkins, P.L. Walker, Appl. Catal. 14(1985) 173-183.
    [30]
    V.H.J. de Beer, F.J. Derbyshire, C.K. Groot, R. Prins, A.W. Scaroni, J.M. Solar, Fuel 63(1984) 1095-1100.
    [31]
    Y. Peng, S. Chen, Green Energy Environ. 3(2018) 335-351.
    [32]
    Y. Duan, Y. Liu, Z. Chen, D. Liu, E. Yu, X. Zhang, H. Fu, J. Fu, J. Zhang, H. Du, Green Chem. 22(2020) 44-53.
    [33]
    P. Hu, L. Yu, A. Zuo, C. Guo, F. Yuan, J. Phys. Chem. C 113(2009) 900-906.
    [34]
    T. Lin, J. Wang, L. Guo, F. Fu, J. Phys. Chem. C 119(2015) 13658-13664.
    [35]
    J. Shao, Q. Qu, Z. Wan, T. Gao, Z. Zuo, H. Zheng, ACS Appl. Mater. Interfaces 7(2015) 22927-22934.
    [36]
    Y. Zhang, Y. Li, H. Li, F. Yin, Y. Zhao, Z. Bakenov, J. Nanoparticle Res. 18(2016) 1-9.
    [37]
    C. Han, D. Zhu, H. Wu, Y. Li, L. Cheng, K. Hu, J. Magn. Magn. Mater. 408(2016) 213-216.
    [38]
    Y. Yi, X. Jin, L. Wang, Q. Zhang, G. Xiong, C. Liang, Catal. Today 175(2011) 460-466.
    [39]
    Q. Wang, S. Dong, D. Zhang, C. Yu, J. Lu, D. Wang, J. Sun, J. Mater. Sci. 53(2018) 1135-1147.
    [40]
    W. Zhang, L. Li, W. Zhu, H. Yan, S. Qi, J. Mater. Sci. Mater. Electron. 28(2017) 15488-15494.
    [41]
    A.S.K. Kumar, S.J. Jiang, J.K. Warchoł, ACS Omega 2(2017) 6187-6200.
    [42]
    H. Lu, J. Wang, H. Hao, T. Wang, Nanomaterials 7(2017).
    [43]
    Q. Pan, F. Zheng, X. Ou, C. Yang, X. Xiong, Z. Tang, L. Zhao, M. Liu, ACS Sustain. Chem. Eng. 5(2017) 4739-4745.
    [44]
    D. Lu, H. Wang, Q. Shen, K.K. Kondamareddy, D. Neena, J. Phys. Chem. Solid. 106(2017) 76-81.
    [45]
    F. Lu, C. Xu, F. Meng, T. Xia, R. Wang, J. Wang, Adv. Mater. Interfaces 4(2017) 1-14.
    [46]
    S. Su, C. Zhang, L. Yuwen, X. Liu, L. Wang, C. Fan, L. Wang, Nanoscale 8(2016) 602-608.
    [47]
    S. Su, H. Sun, F. Xu, L. Yuwen, L. Wang, Electroanalysis 25(2013) 2523-2529.
    [48]
    M. Yi, C. Zhang, Tribol. Int. 116(2017) 285-294.
    [49]
    H.B. Park, Y.K. Lee, Fuel 239(2019) 1265-1273.
    [50]
    C. Ovalles, E. Rogel, M.E. Moir, A. Brait, Appl. Catal. A Gen. 532(2017) 57-64.
    [51]
    K.-D. Kim, Y.-K. Lee, J. Catal. 380(2019) 278-288.
    [52]
    K.D. Kim, Y.K. Lee, J. Catal. 369(2019) 111-121.
    [53]
    M. Daage, R.R. Chianelli, J. Catal. 149(1994) 414-427.
    [54]
    J.P.R. Vissers, B. Scheffer, V.H.J. de Beer, J.A. Moulijn, R. Prins, J. Catal. 105(1987) 277-284.
    [55]
    S. Sharifvaghefi, B. Yang, Y. Zheng, Appl. Catal. A Gen. 566(2018) 164-173.
    [56]
    J. Li, X. Wang, X. Tang, M. Zhang, X. Zheng, C. Wang, Z. Tang, Fuel Process. Technol. 188(2019) 137-145.
    [57]
    Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 130(2008) 28-29.
    [58]
    K. Zhao, X. Wang, H. Pan, Q. Li, J. Yang, X. Li, Z. Zhang, Appl. Surf. Sci. 427(2018) 1080-1089.
    [59]
    Y. Chen, Y. Wang, J. Lu, C. Wu, Fuel 88(2009) 1426-1434.
    [60]
    T. Liu, J. Lu, X. Zhao, Y. Zhou, Q. Wei, C. Xu, Y. Zhang, S. Ding, T. Zhang, X. Tao, L. Ju, Q. Shi, Energy Fuels 29(2015) 2089-2096.
    [61]
    M.J. Ledoux, S. Hantzer, Catal. Today 7(1990) 479-496.
    [62]
    S. Dejonghe, R. Hubaut, J. Grimblot, J.P. Bonnelle, T.D. Courieres, D. Faure, Catal. Today 7(1990) 569-585.
    [63]
    T. Takahashi, H. Higashi, T. Kai, Catal. Today 104(2005) 76-85.
    [64]
    A.K. Rathi, M.B. Gawande, J. Pechousek, J. Tucek, C. Aparicio, M. Petr, O. Tomanec, R. Krikavova, Z. Travnicek, R.S. Varma, R. Zboril, Green Chem. 18(2016) 2363-2373.
    [65]
    M. Mahmoudi, N. Bertrand, H. Zope, O.C. Farokhzad, Nano Today 11(2016) 817-832.
    [66]
    S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49(2010) 3428-3459.
    [67]
    P.A. Montano, A.S. Bommannavar, J. Mol. Catal. 20(1983) 393-403.
    [68]
    T. Yang, C. Liu, W. Deng, C. Li, L. Gan, Q. Niu, Ind. Eng. Chem. Res. 58(2019) 19072-19081.
    [69]
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257(2011) 2717-2730.
    [70]
    X. Lin, X. Wang, Q. Zhou, C. Wen, S. Su, J. Xiang, P. Cheng, X. Hu, Y. Li, X. Wang, X. Gao, R. Nözel, G. Zhou, Z. Zhang, J. Liu, ACS Sustain. Chem. Eng. 7(2019) 1673-1682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (197) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return