Volume 6 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Xueying Yuan, Xiaomei Deng, Chengzhi Cai, Zenan Shi, Hong Liang, Shuhua Li, Zhiwei Qiao. Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air. Green Energy&Environment, 2021, 6(5): 759-770. doi: 10.1016/j.gee.2020.06.024
Citation: Xueying Yuan, Xiaomei Deng, Chengzhi Cai, Zenan Shi, Hong Liang, Shuhua Li, Zhiwei Qiao. Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air. Green Energy&Environment, 2021, 6(5): 759-770. doi: 10.1016/j.gee.2020.06.024

Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air

doi: 10.1016/j.gee.2020.06.024
  • Aiming to efficiently capture the formaldehyde (HCHO) with low content in the air exceeding the standard, 31,399 hydrophobic metal-organic frameworks (MOFs) were first selected from 137,953 hypothetical MOFs to calculate their formaldehyde adsorption performance, namely, adsorption capacity (NHCHO) and selectivity (SHCHO=N2+O2) by molecular simulation and machine learning (ML). To combine the SHCHO=N2+O2 and NHCHO, a new performance metric, the tradeoff between selectivity and capacity (TSC) was proposed to identify more reasonably the top-performing MOFs. The MOFs were divided into three datasets (i.e., all of the MOFs (AM), MOFs with top 5% of SHCHO=N2+O2HCHO=N2+(PS) and MOFs with top 5% of NHCHO (PN)) to scrutinize and explore the characteristics of different materials capturing formaldehyde from the air (N2 and O2). Furthermore, after four ML algorithms (the back propagation neural network (BPNN), support vector machine (SVM), extreme learning machine (ELM), and random forest (RF)) are applied to quantitatively assess the prediction effects of performance indexes in different datasets, RF algorithm with the most accurate prediction revealed that the TSC has strong correlations with the MOF descriptors in PS dataset. In view of 14.10% of the promising MOFs occupied PN, the design paths of excellent adsorbents for six MOF descriptors were quantitatively determined, especially for the Henry's coefficient (KHCHO) and heat of adsorption of formaldehyde (Qst0). Their probabilities of obtaining excellent MOFs could reach 100% and 77.42%, respectively, and both the relative importance and the trends of univariate analysis coherently confirm the important positions of KHCHO and Qst0. Finally, 20 best MOFs were identified for the single-step separation of formaldehyde with low concentration. The microscopic insights and structure-performance relationship predictions from this computational and ML study are useful toward the development of new MOFs for the capture of formaldehyde from air.

     

  • loading
  • [1]
    V.K. Saini, J. Pires, J. Environ. Sci. 55(2017) 321-330.
    [2]
    L. Nie, J. Yu, M. Jaroniec, F.F. Tao, Catal. Sci. Technol. 6(2016) 3649-3669.
    [3]
    C.-J. Na, M.-J. Yoo, D.C. Tsang, H.W. Kim, K.-H. Kim, J. Hazard. Mater. 366(2019) 452-465.
    [4]
    E.Y. Nakanishi, M.R. Cabral, P.D.S. Gonçalves, V. dos Santos, H.S. Junior, J. Clean. Prod. 195(2018) 1259-1269.
    [5]
    K. Vikrant, M. Cho, A. Khan, K.-H. Kim, W.-S. Ahn, E.E. Kwon, Environ. Res. 178(2019) 108672.
    [6]
    K.-W. Zhou, Y. Zhou, Y. Sun, X.-J. Tian, Acta Chim. Sin. 66(2008) 943-946.
    [7]
    H. Dou, D. Long, X. Rao, Y. Zhang, Y. Qin, F. Pan, K. Wu, Acs Sustain. Chem. Eng. 7(2019) 4456-4465.
    [8]
    S.-C. Hu, Y.-C. Chen, X.-Z. Lin, A. Shiue, P.-H. Huang, Y.-C. Chen, S.-M. Chang, C.-H. Tseng, B. Zhou, Environ. Sci. Pollut. Res. 25(2018) 28525-28545.
    [9]
    K.J. Lee, J. Miyawaki, N. Shiratori, S.-H. Yoon, J. Jang, J. Hazard. Mater. 260(2013) 82-88.
    [10]
    C. Montoro, F. Linares, E.Q. Procopio, I. Senkovska, S. Kaskel, S. Galli, N. Masciocchi, E. Barea, J.A. Navarro, J. Am. Chem. Soc. 133(2011) 11888-11891.
    [11]
    O.M. Yaghi, M. O'keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423(2003) 705-714.
    [12]
    H. Li, M. Eddaoudi, M. O'keeffe, O.M. Yaghi, Nature 402(1999) 276-279.
    [13]
    P.Z. Moghadam, S.M. Rogge, A. Li, C.-M. Chow, J. Wieme, N. Moharrami, M. Aragones-Anglada, G. Conduit, D.A. Gomez-Gualdron, V. van Speybroeck, Matter 1(2019) 219-234.
    [14]
    F. Rezaei, S. Lawson, H. Hosseini, H. Thakkar, A. Hajari, S. Monjezi, A.A. Rownaghi, Chem. Eng. J. 313(2017) 1346-1353.
    [15]
    Y. He, F. Chen, B. Li, G. Qian, W. Zhou, B. Chen, Coord. Chem. Rev. 373(2018) 167-198.
    [16]
    B. Wang, L.-H. Xie, X. Wang, X.-M. Liu, J. Li, J.-R. Li, Green Energy Environ. 3(2018) 191-228.
    [17]
    G. Xu, Z. Meng, Y. Liu, X. Guo, K. Deng, R. Lu, Int. J. Hydrogen Energy 44(2019) 6702-6708.
    [18]
    X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Adv. Mater. 30(2018) 1705189.
    [19]
    M. Kang, D.W. Kang, C.S. Hong, Dalton Trans. 48(2019) 2263-2270.
    [20]
    K. Vikrant, Y. Qu, J.E. Szulejko, V. Kumar, K. Vellingiri, D. Bukhvalov, T.J. Kim, K.-H. Kim, Nanoscale 12(2020) 8330-8343.
    [21]
    Q. Wang, D. Astruc, Chem. Rev. 120(2020) 1438-1511.
    [22]
    P. Leo, G. Orcajo, D. Briones, F. Martínez, G. Calleja, Catal. Today 345(2020) 251-257.
    [23]
    W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Chem. Soc. Rev. 46(2017) 3242-3285.
    [24]
    B. Yan, J. Mater. Chem. C 7(2019) 8155-8175.
    [25]
    G. Chedid, A. Yassin, Nanomaterials 8(2018) 916.
    [26]
    H. Li, L. Li, R.-B. Lin, W. Zhou, S. Xiang, B. Chen, Z. Zhang, EnergyChem 1(2019) 100006.
    [27]
    P.G. Boyd, A. Chidambaram, E. García-Díez, C.P. Ireland, T.D. Daff, R. Bounds, A. Gładysiak, P. Schouwink, S.M. Moosavi, M.M. MarotoValer, Nature 576(2019) 253-256.
    [28]
    A.J.M. Reddy, N. Katari, P. Nagaraju, S.M. Surya, Mater. Chem. Phys. 241(2020) 122357.
    [29]
    L. Wang, X.-Y. Liang, Z.-Y. Chang, L.-S. Ding, S. Zhang, B.-J. Li, Acs Appl. Mater. Interfaces 10(2018) 42-46.
    [30]
    N.S. Bobbitt, M.L. Mendonca, A.J. Howarth, T. Islamoglu, J.T. Hupp, O.K. Farha, R.Q. Snurr, Chem. Soc. Rev. 46(2017) 3357-3385.
    [31]
    Y.J. Col on, R.Q. Snurr, Chem. Soc. Rev. 43(2014) 5735-5749.
    [32]
    L. Bian, W. Li, Z. Wei, X. Liu, S. Li, Acta Chim. Sin. 76(2018) 303-310.
    [33]
    L. Peng, Q. Zhu, P. Wu, X. Wu, W. Cai, Phys. Chem. Chem. Phys. 21(2019) 8508-8516.
    [34]
    D.V. Gonçalves, R.Q. Snurr, S.M. Lucena, Adsorption 25(2019) 1633-1642.
    [35]
    R. Anderson, J. Rodgers, E. Argueta, A. Biong, D.A. G oMez-Gualdr oN, Chem. Mater. 30(2018) 6325-6337.
    [36]
    N.S. Bobbitt, R.Q. Snurr, Ind. Eng. Chem. Res. 56(2017) 14324-14336.
    [37]
    X. Sun, X. Gu, W. Xu, W.-J. Chen, Q. Xia, X. Pan, X. Zhao, Y. Li, Q.-H. Wu, Front. Chem. 7(2019) 652.
    [38]
    L.N. Mchugh, A. Terracina, P.S. Wheatley, G. Buscarino, M.W. Smith, R.E. Morris, Angew. Chem. Int. Ed. 58(2019) 11747-11751.
    [39]
    Z.-Y. Gu, G. Wang, X.-P. Yan, Anal. Chem. 82(2010) 1365-1370.
    [40]
    C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Nat. Chem. 4(2012) 83.
    [41]
    D. Dubbeldam, S. Calero, D.E. Ellis, R.Q. Snurr, Mol. Simulat. 42(2016) 81-101.
    [42]
    T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Microporous Mesoporous Mater. 149(2012) 134-141.
    [43]
    P.Z. Moghadam, D. Fairen-Jimenez, R.Q. Snurr, J. Mater. Chem. A 4(2016) 529-536.
    [44]
    Z. Qiao, Q. Xu, A.K. Cheetham, J. Jiang, J. Phys. Chem. C 121(2017) 22208-22215.
    [45]
    A.K. Rapp e, C.J. Casewit, K. Colwell, W.A. Goddard Iii, W.M. Skiff, J. Am. Chem. Soc. 114(1992) 10024-10035.
    [46]
    E.S. Kadantsev, P.G. Boyd, T.D. Daff, T.K. Woo, J. Phys. Chem. Lett. 4(2013) 3056-3061.
    [47]
    G. Hantal, P. Jedlovszky, P.N. Hoang, S. Picaud, J. Phys. Chem. C 111(2007) 14170-14178.
    [48]
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102(1998) 2569-2577.
    [49]
    P.P. Ewald, Ann. Phys. 369(1921) 253-287.
    [50]
    M.S. Shah, M. Tsapatsis, J.I. Siepmann, Angew. Chem. Int. Ed. 55(2016) 5938-5942.
    [51]
    W. Yang, H. Liang, Z. Qiao, Acta Chim. Sin. 76(2018) 785-792.
    [52]
    Z. Shi, W. Yang, X. Deng, C. Cai, Y. Yan, H. Liang, Z. Liu, Z. Qiao, Mol. Syst. Des. Eng. 5(2020) 725-742.
    [53]
    T. Watanabe, D.S. Sholl, Langmuir 28(2012) 14114-14128.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return