Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Li Ma, Yu Qiu, Min Li, Dongxu Cui, Shuai Zhang, Dewang Zeng, Rui Xiao. Efficient hydrogen production through the chemical looping redox cycle of YSZ supported iron oxides. Green Energy&Environment, 2021, 6(6): 875-883. doi: 10.1016/j.gee.2020.06.023
Citation: Li Ma, Yu Qiu, Min Li, Dongxu Cui, Shuai Zhang, Dewang Zeng, Rui Xiao. Efficient hydrogen production through the chemical looping redox cycle of YSZ supported iron oxides. Green Energy&Environment, 2021, 6(6): 875-883. doi: 10.1016/j.gee.2020.06.023

Efficient hydrogen production through the chemical looping redox cycle of YSZ supported iron oxides

doi: 10.1016/j.gee.2020.06.023
  • The chemical looping process, where an oxygen carrier is reduced and oxidized in a cyclic manner, offers a promising option for hydrogen production through splitting water because of the much higher water splitting efficiency than solar electrocatalytic and photocatalytic process. A typical oxygen carrier has to comprise a significant amount of inert support, to maintain stability in multiple redox cycles, thereby resulting in a trade-off between the reaction reactivity and stability. Herein, we proposed the use of ion-conductive yttria-stabilized zirconia (YSZ) support Fe2O3 to prepare oxygen carriers materials. The obtained Fe2O3/YSZ composites showed high reactivity and stability. Particularly, Fe2O3/YSZ-20 (oxygen storage capacity, 24.13%) exhibited high hydrogen yield of ∼10.30 mmol g-1 and hydrogen production rate of ∼0.66 mmol g-1 min-1 which was twice as high as that of Fe2O3/Al2O3. Further, the transient pulse test indicated that active oxygen diffusion was the rate-limiting step during the redox process. The electrochemical impedance spectroscopy (EIS) measurement revealed that the YSZ support addition facilitated oxygen diffusion of materials, which contributed to the improved hydrogen production performance. The support effect obtained in this work provides a potentially efficient route for the modification of oxygen carrier materials.

     

  • These people contributed equally to this work.
  • loading
  • [1]
    J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun. 8(2017) 15437.
    [2]
    X. Zhu, Q. Imtiaz, F. Donat, C.R. Müller, F. Li, Energy Environ. Sci. 13(2020) 772-804.
    [3]
    I. Deniz, F. Vardar-Sukan, M. Yüksel, M. Saglam, L. Ballice, O. YesilCeliktas, Energy Convers. Manag. 96(2015) 124-130.
    [4]
    J. Tian, K. Zhang, W. Wang, F. Wang, J. Dan, S. Yang, J. Zhang, B. Dai, F. Yu, Green Energy Environ. 4(2019) 311-321.
    [5]
    S. Zhai, J. Rojas, N. Ahlborg, K. Lim, C.H.M. Cheng, C.L. Xie, M.F. Toney, I.H. Jung, W.C. Chueh, A. Majumdar, Energy Environ. Sci. 13(2020) 592-600.
    [6]
    A. Hafizi, M.R. Rahimpour, S. Hassanajili, Appl. Energy 165(2016) 685-694.
    [7]
    O. Vozniuk, S. Agnoli, L. Artiglia, A. Vassoi, N. Tanchoux, F. Di Renzo, G. Granozzi, F. Cavani, Green Chem. 18(2016) 1038-1050.
    [8]
    I.A. Al-Shankiti, A. Bayon, A.W. Weimer, Chem. Eng. J. 389(2020) 8.
    [9]
    S. Cocchi, M. Mari, F. Cavani, J.-M.M. Millet, Appl. Catal., B 152-153(2014) 250-261.
    [10]
    H. Ozcan, I. Dincer, Energy Convers. Manag. 85(2014) 477-487.
    [11]
    J. Guerrero-Caballero, T. Kane, N. Haidar, L. Jalowiecki-Duhamel, A. Löfberg, Catal. Today 333(2019) 251-258.
    [12]
    S. Chuangchote, J. Jitputti, T. Sagawa, S. Yoshikawa, ACS Appl. Mater. Interfaces 1(2009) 1140-1143.
    [13]
    N.L. Galinsky, Y. Huang, A. Shafiefarhood, F. Li, ACS Sustain. Chem. Eng. 1(2013) 364-373.
    [14]
    B. Qiu, C. Yang, W. Guo, Y. Xu, Z. Liang, D. Ma, R. Zou, J. Mater. Chem. 5(2017) 8081-8086.
    [15]
    H. Song, Z. Liu, Y. Wang, N. Zhang, X. Qu, K. Guo, M. Xiao, H. Gai, Green Energy Environ. 4(2019) 278-286.
    [16]
    J. Wang, M. Liu, M. Wang, Y. Wang, A. Zhang, X. Zhao, G. Zeng, F. Deng, Green Energy Environ. 4(2019) 264-269.
    [17]
    S. Yusuf, L.M. Neal, F. Li, ACS Catal. 7(2017) 5163-5173.
    [18]
    C. Dueso, C. Thompson, I. Metcalfe, Appl. Energy 157(2015) 382-390.
    [19]
    Q.Y. Liu, C.S. Hu, B. Peng, C. Liu, Z.W. Li, K. Wu, H.Y. Zhang, R. Xiao, Energy Convers. Manag. 199(2019) 111951.
    [20]
    E.Y. Chung, W.K. Wang, S.G. Nadgouda, D.S. Baser, J.A. Sofranko, L.-S. Fan, Ind. Eng. Chem. Res. 55(2016) 12750-12764.
    [21]
    T. Shen, H. Ge, L. Shen, Int. J. Greenh. Gas Cont. 75(2018) 63-73.
    [22]
    J. Hu, V.V. Galvita, H. Poelman, C. Detavernier, G.B. Marin, Appl. Catal., B 231(2018) 123-136.
    [23]
    F. Kosaka, H. Hatano, Y. Oshima, J. Otomo, Chem. Eng. Sci. 123(2015) 380-387.
    [24]
    G.K. Reddy, P. Boolchand, P.G. Smirniotis, J. Phys. Chem. C 116(2012) 11019-11031.
    [25]
    Y. Larring, M. Pishahang, M.F. Sunding, K. Tsakalakis, Fuel 159(2015) 169-178.
    [26]
    B.S. Kwak, N.-K. Park, J.-I. Baek, H.-J. Ryu, M. Kang, Korean J. Chem. Eng. 34(2017) 1936-1943.
    [27]
    J. Riley, R. Siriwardane, H. Tian, W. Benincosa, J. Poston, Appl. Energy 228(2018) 1515-1530.
    [28]
    B.J. Hare, D. Maiti, Y.A. Daza, V.R. Bhethanabotla, J.N. Kuhn, ACS Catal. 8(2018) 3021-3029.
    [29]
    N.L. Galinsky, A. Shafiefarhood, Y. Chen, L. Neal, F. Li, Appl. Catal., B 164(2015) 371-379.
    [30]
    S. Ma, S. Chen, A. Soomro, W. Xiang, Energy Fuels 31(2017) 8001-8013.
    [31]
    L.M. Neal, A. Shafiefarhood, F. Li, ACS Catal. 4(2014) 3560-3569.
    [32]
    W. Liu, M. Ismail, M.T. Dunstan, W. Hu, Z. Zhang, P.S. Fennell, S.A. Scott, J.S. Dennis, RSC Adv. 5(2015) 1759-1771.
    [33]
    D. Zeng, Y. Qiu, S. Peng, C. Chen, J. Zeng, S. Zhang, R. Xiao, J. Mater. Chem. 6(2018) 11306-11316.
    [34]
    F. Li, Z. Sun, S. Luo, L.-S. Fan, Energy Environ. Sci. 4(2011) 876-880.
    [35]
    G. Voitic, V. Hacker, RSC Adv. 6(2016) 98267-98296.
    [36]
    K. Hosoi, H. Hagiwara, S. Ida, T. Ishihara, J. Phys. Chem. C 120(2016) 16110-16117.
    [37]
    A. Mishra, T. Li, F. Li, E.E. Santiso, Chem. Mater. 31(2018) 689-698.
    [38]
    F. Li, S. Luo, Z. Sun, X. Bao, L.-S. Fan, Energy Environ. Sci. 4(2011).
    [39]
    Y.A. Daza, R.A. Kent, M.M. Yung, J.N.J.I. Kuhn, E.C. Res. 53(2014) 5828-5837.
    [40]
    D.W. Zeng, R. Xiao, Z.C. Huang, J.M. Zeng, H.Y. Zhang, Int. J. Hydrogen Energy 41(2016) 6676-6684.
    [41]
    B.L. Dou, H. Zhang, G.M. Cui, M.X. He, C.J. Ruan, Z.L. Wang, H.S. Chen, Y.J. Xu, B. Jiang, C.F. Wu, Energy 167(2019) 1097-1106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (185) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return