Mengyang Dong, Xu Liu, Lixue Jiang, Zhengju Zhu, Yajie Shu, Shan Chen, Yuhai Dou, Porun Liu, Huajie Yin, Huijun Zhao. Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries. Green Energy&Environment, 2020, 5(4): 499-505. doi: 10.1016/j.gee.2020.06.022
Citation: Mengyang Dong, Xu Liu, Lixue Jiang, Zhengju Zhu, Yajie Shu, Shan Chen, Yuhai Dou, Porun Liu, Huajie Yin, Huijun Zhao. Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries. Green Energy&Environment, 2020, 5(4): 499-505. doi: 10.1016/j.gee.2020.06.022

Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries

doi: 10.1016/j.gee.2020.06.022
  • A non-noble-metal bifunctional catalyst with efficient and durable activity towards both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is crucial to the development of rechargeable Zn-air batteries. Herein, a facile one-step hydrothermal method is reported for the synthesis of a high-performance bifunctional oxygen electrocatalyst, cobalt-doped Mn3O4 nanocrystals supported on graphene nanosheets (Co–Mn3O4/G). Compare to pristine Mn3O4, this Co–Mn3O4/G exhibits greatly enhanced electrocatalytic activity, delivering a half-wave potential of 0.866 V for the ORR and a low overpotential of 275 mV at 10 mA cm−2 for the OER. The zinc-air battery built with Co–Mn3O4/G shows a reduced charge–discharge voltage of 0.91 V at 10 mA cm−2, an power density of 115.24 mW cm−2 and excellent stability without any degradation after 945 cycles (315 h), outperforming the state-of-the-art Pt/C–Ir/C catalyst-based device.

     

  • loading
  • [1]
    L. Chong, J. Wen, J. Kubal, F.G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.-J. Liu, Science 362 (2018) 1276-1281.
    [2]
    X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, Z.Q. Liu, Angew. Chem. Int. Ed. 132 (2020) 6554-6561.
    [3]
    S. Ren, X. Duan, S. Liang, M. Zhang, H. Zheng, J. Mater. Chem. A 8 (2020) 6144-6182.
    [4]
    Y.J. Li, L. Cui, P.F. Da, K.W. Qiu, W.J. Qin, W.B. Hu, X.W. Du, K. Davey, T. Ling, S.Z. Qiao, Adv. Mater. 30 (2018) 1804653.
    [5]
    L. Ma, W. Zhang, P. Zhao, J. Liang, Y. Hu, G. Zhu, R. Chen, Z. Tie, J. Liu, Z. Jin, J. Mater. Chem. A 6 (2018) 20076-20082.
    [6]
    D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang, Q. Gu, K. Davey, L. Gu, S.Z. Qiao, Adv. Mater. (2020) 2001894.
    [7]
    Y. Li, H. Dai, Chem. Soc. Rev. 43 (2014) 5257-5275.
    [8]
    X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2 (2019) 259-268.
    [9]
    D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S.-Z. Qiao, Sci. Adv. 6 (2020) eaba4098.
    [10]
    C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu, H. Zhang, Z. Liu, C. Cheng, S.J. Pennycook, J. Wang, Adv. Mater. 29 (2017) 1704117.
    [11]
    D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S.Z. Qiao, Angew. Chem. Int. Ed. 58 (2019) 7823-7828.
    [12]
    H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu, H. Zhao, Adv. Mater. (2019) 1904870-1904901.
    [13]
    X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, T. Ma, Z.Q. Liu, Angew. Chem. Int. Ed. 131 (2019) 13425-13430.
    [14]
    G. Fu, J. Wang, Y. Chen, Y. Liu, Y. Tang, J.B. Goodenough, J.M. Lee, Adv. Energy Mater. 8 (2018) 1802263.
    [15]
    Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 117 (2017) 10121-10211.
    [16]
    C.-S. Li, Y. Sun, W.-H. Lai, J.-Z. Wang, S.-L. Chou, ACS Appl. Mater. Interfaces 8 (2016) 27710-27719.
    [17]
    Z. Huang, X. Qin, X. Gu, G. Li, Y. Mu, N. Wang, K. Ithisuphalap, H. Wang, Z. Guo, Z. Shi, ACS Appl. Mater. Interfaces 10 (2018) 23900-23909.
    [18]
    T. Li, B. Xue, B. Wang, G. Guo, D. Han, Y. Yan, A. Dong, J. Am. Chem. Soc. 139 (2017) 12133-12136.
    [19]
    Q. Tang, L. Jiang, J. Liu, S. Wang, G. Sun, ACS Catal. 4 (2014) 457-463.
    [20]
    Z. Luo, E. Irtem, M. IbáÑEz, R. Nafria, S. Martí-SáNchez, A. Genc, M. De La Mata, Y. Liu, D. Cadavid, J. Llorca, ACS Appl. Mater. Interfaces 8 (2016) 17435-17444.
    [21]
    Z. Ye, C. Qin, G. Ma, X. Peng, T. Li, D. Li, Z. Jin, ACS Appl. Mater. Interfaces 10 (2018) 39809-39818.
    [22]
    C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun. 6 (2015) 7345.
    [23]
    J. Shi, K. Lei, W. Sun, F. Li, F. Cheng, J. Chen, Nano Res. 10 (2017) 3836-3847.
    [24]
    W. Wang, J.-Q. Chen, Y.-R. Tao, S.-N. Zhu, Y.-X. Zhang, X.-C. Wu, ACS Catal. 9 (2019) 3498-3510.
    [25]
    H. Liu, X. Lu, Y. Hu, R. Chen, P. Zhao, L. Wang, G. Zhu, L. Ma, Z. Jin, J. Mater. Chem. A 7 (2019) 12489-12497.
    [26]
    H. Liu, Y. Wang, X. Lu, Y. Hu, G. Zhu, R. Chen, L. Ma, H. Zhu, Z. Tie, J. Liu, Jin, J. Nano Energy 35 (2017) 350-357.
    [27]
    L. Li, J. Yang, H. Yang, L. Zhang, J. Shao, W. Huang, B. Liu, X. Dong, ACS Appl. Energy Mater. 1 (2018) 963-969.
    [28]
    T.N. Lambert, D.J. Davis, W. Lu, S.J. Limmer, P.G. Kotula, A. Thuli, M. Hungate, G. Ruan, Z. Jin, J.M. Tour, ChemComm 48 (2012) 7931-7933.
    [29]
    H. Yin, S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao, Z. Tang, Adv. Mater. 25 (2013) 6270-6276.
    [30]
    Y. Li, X. Ni, Electrochim. Acta 227 (2017) 162-169.
    [31]
    S.-Y. Liu, J. Xie, Y.-X. Zheng, G.-S. Cao, T.-J. Zhu, X.-B. Zhao, Electrochim. Acta 66 (2012) 271-278.
    [32]
    J. Duan, Y. Zheng, S. Chen, Y. Tang, M. Jaroniec, S. Qiao, ChemComm 49 (2013) 7705-7707.
    [33]
    F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 3 (2011) 79.
    [34]
    H. Yin, H. Tang, D. Wang, Y. Gao, Z. Tang, ACS Nano 6 (2012) 8288-8297.
    [35]
    J.-G. Wang, D. Jin, R. Zhou, X. Li, X.-R. Liu, C. Shen, K. Xie, B. Li, F. Kang, B. Wei, ACS Nano 10 (2016) 6227-6234.
    [36]
    T. Zhang, C. He, F. Sun, Y. Ding, M. Wang, L. Peng, J. Wang, Y. Lin, Sci. Rep. 7 (2017) 43638.
    [37]
    L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed. 55 (2016) 5277-5281.
    [38]
    L. Li, C. Nan, J. Lu, Q. Peng, Y. Li, ChemComm 48 (2012) 6945-6947.
    [39]
    A.M.E. Raj, V. Senthilkumar, V. Swaminathan, J. Wollschlager, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, Thin Solid Films 517 (2008) 510-516.
    [40]
    S.-A. Park, H. Lim, Y.-T. Kim, ACS Catal. 5 (2015) 3995-4002.
    [41]
    J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Angew. Chem. Int. Ed. 54 (2015) 7399-7404.
    [42]
    J. Fu, F.M. Hassan, C. Zhong, J. Lu, H. Liu, A. Yu, Z. Chen, Adv. Mater. 29 (2017) 1702526.
    [43]
    S. Wang, D. Yu, L. Dai, D.W. Chang, J.-B. Baek, ACS Nano 5 (2011) 6202-6209.
    [44]
    K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, ACS Catal. 5 (2015) 6021-6031.
    [45]
    M. Risch, K.A. Stoerzinger, B. Han, T.Z. Regier, D. Peak, S.Y. Sayed, C. Wei, Z. Xu, Y. Shao-Horn, J. Phys. Chem. C 121 (2017) 17682-17692.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (153) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return