Shengtai Hou, Yunhao Sun, Xueguang Jiang, Pengfei Zhang. Nitrogen-rich isoindoline-based porous polymer: Promoting knoevenagel reaction at room temperature. Green Energy&Environment, 2020, 5(4): 484-491. doi: 10.1016/j.gee.2020.06.021
Citation: Shengtai Hou, Yunhao Sun, Xueguang Jiang, Pengfei Zhang. Nitrogen-rich isoindoline-based porous polymer: Promoting knoevenagel reaction at room temperature. Green Energy&Environment, 2020, 5(4): 484-491. doi: 10.1016/j.gee.2020.06.021

Nitrogen-rich isoindoline-based porous polymer: Promoting knoevenagel reaction at room temperature

doi: 10.1016/j.gee.2020.06.021
  • Nitrogen-rich porous organic polymers (POPs) with basic features have already shown promising performance in various organic reactions. But the harsh conditions, tedious synthetic methods and the requirement of specific monomers impede their further application. Herein, we introduce isoindoline chemistry into POP community. An isoindoline formation process between aniline and bromomethylbenzene—coupling nucleophilic substitution, HBr elimination, and intramolecular cyclization in one pot, is utilized for POPs synthesis. Nitrogen-rich isoindoline-based porous polymers (IPPs) were obtained with specific surface areas up to 408 m2 g−1. Unexpectedly, mechanochemistry could enable the rapid (3 h) and solid-state synthesis of IPP catalysts. Moreover, this nitrogen-rich catalyst presents excellent activity (isolated yield: 99%), scalable ability (up to 14 g per run) and recyclability (five runs) towards the Knoevenagel condensation reaction under mild reaction conditions (water as solvent at room temperature).

     

  • loading
  • [1]
    E. Merino, E. Verde-Sesto, E.M. Maya, M. Iglesias, F. Sanchez, A. Corma, Chem. Mater. 25 (2013) 981-988
    [2]
    Y. Zhang, S.N. Riduan, Chem. Soc. Rev. 41 (2012) 2083-2094
    [3]
    X. Du, Y. Sun, B. Tan, Q. Teng, X. Yao, C. Su, W. Wang, Chem. Commun. 46 (2010) 970-972
    [4]
    F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45 (2006) 3216-3251
    [5]
    H. Ma, H. Ren, S. Meng, Z. Yan, H. Zhao, F. Sun, G. Zhu, Chem. Commun. 49 (2013) 9773-9775
    [6]
    H. Oh, S.B. Kalidindi, Y. Um, S. Bureekaew, R. Schmid, R.A. Fischer, M. Hirscher, Angew. Chem. Int. Ed. 52 (2013) 13219-13222
    [7]
    K.E. Maly, J. Mater. Chem. 19 (2009) 1781
    [8]
    R.E. Morris, P.S. Wheatley, Angew. Chem. Int. Ed. 47 (2008) 4966-4981
    [9]
    J.X. Jiang, F. Su, A. Trewin, C.D. Wood, H. Niu, J.T. Jones, Y.Z. Khimyak, A.I. Cooper, J. Am. Chem. Soc. 130 (2008) 7710-7720
    [10]
    F. Svec, J.M.J. Frechet, Macromolecules 28 (1995) 7580-7582
    [11]
    F. Tang, H. Fudouzi, T. Uchikoshi, Y. Sakka, J. Eur. Ceram. Soc. 24 (2004) 341-344
    [12]
    P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Chem. Commun. (2004) 230-231
    [13]
    N.B. McKeown, P.M. Budd, Chem. Soc. Rev. 35 (2006) 675-683
    [14]
    N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Chem. 11 (2005) 2610-2620
    [15]
    O.K. Farha, A.M. Spokoyny, B.G. Hauser, Y.-S. Bae, S.E. Brown, R.Q. Snurr, C.A. Mirkin, J.T. Hupp, Chem. Mater. 21 (2009) 3033-3035
    [16]
    R. Dawson, L.A. Stevens, T.C. Drage, C.E. Snape, M.W. Smith, D.J. Adams, A.I. Cooper, J. Am. Chem. Soc. 134 (2012) 10741-10744
    [17]
    M.G. Schwab, A. Lennert, J. Pahnke, G. Jonschker, M. Koch, I. Senkovska, M. Rehahn, S. Kaskel, J. Mater. Chem. 21 (2011) 2131-2135
    [18]
    C.D. Wood, B. Tan, A. Trewin, H. Niu, D. Bradshaw, M.J. Rosseinsky, Y.Z. Khimyak, N.L. Campbell, R. Kirk, E. Stockel, A.I. Cooper, Chem. Mater. 19 (2007) 2034-2048
    [19]
    J.Y. Lee, C.D. Wood, D. Bradshaw, M.J. Rosseinsky, A.I. Cooper, Chem. Commun. (2006) 2670-2672
    [20]
    J. Germain, J. Hradil, J.M.J. Frechet, F. Svec, Chem. Mater. 18 (2006) 4430-4435
    [21]
    T. Ma, E.A. Kapustin, S.X. Yin, L. Liang, Z. Zhou, J. Niu, L.H. Li, Y. Wang, J. Su, J. Li, X. Wang, W.D. Wang, W. Wang, J. Sun, O.M. Yaghi, Science 361 (2018) 48-52
    [22]
    S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 141 (2018) 1807-1822
    [23]
    C.S. Diercks, O.M. Yaghi, Science 355 (2017) 923-933
    [24]
    A.P. Cote, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Science 310 (2005) 1166-1170
    [25]
    Z. Xiang, D. Cao, J. Mater. Chem. A 1 (2013) 2691-2718
    [26]
    Y. Zhu, H. Long, W. Zhang, Chem. Mater. 25 (2013) 1630-1635
    [27]
    D. Yuan, W. Lu, D. Zhao, H.C. Zhou, Adv. Mater. 23 (2011) 3723-3725
    [28]
    H. Ren, T. Ben, E. Wang, X. Jing, M. Xue, B. Liu, Y. Cui, S. Qiu, G. Zhu, Chem. Commun. 46 (2010) 291-293
    [29]
    Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev. 42 (2013) 8012-8031
    [30]
    P. Kuhn, A. Thomas, M. Antonietti, Macromolecules 42 (2009) 319-326
    [31]
    P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450-3453
    [32]
    T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing, S. Qiu, Energy Environ. Sci. 4 (2011) 3991-3999
    [33]
    L. Zou, D. Feng, T.-F. Liu, Y.-P. Chen, S. Fordham, S. Yuan, J. Tian, H.-C. Zhou, Chem. Commun. 51 (2015) 4005-4008
    [34]
    G. Yang, H. Han, C. Du, Z. Luo, Y. Wang, Polymer 51 (2010) 6193-6202
    [35]
    R.W. Tilford, W.R. Gemmill, H.-C. zur Loye, J.J. Lavigne, Chem. Mater. 18 (2006) 5296-5301
    [36]
    A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tomanek, E.I. Kauppinen, Nat. Nanotech. 2 (2007) 156-161
    [37]
    P. Yang, S. Gai, J. Lin, Chem. Soc. Rev. 41 (2012) 3679-3698
    [38]
    H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanoscale 4 (2012) 2526-2542
    [39]
    D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 112 (2012) 3959-4015
    [40]
    B.K. Wilk, Tetrahedron 53 (1997) 7097-7100
    [41]
    B. Tamami, A. Fadavi, Catal. Commun. 6 (2005) 747-751
    [42]
    L.G. Voskressensky, A.A. Festa, A.V. Varlamov, Tetrahedron 70 (2014) 551-572
    [43]
    H. Qin, Y. Zhou, Q. Zeng, H. Cheng, L. Chen, B. Zhang, Z. Qi, Green Energy Environ. (2019) 124-129.
    [44]
    Y. Cui, J. Du, Y. Liu, Y. Yu, S. Wang, H. Pang, Z. Liang, J. Yu, Polym. Chem. 9 (2018) 2643-2649
    [45]
    B. List, Angew. Chem. Int. Ed. 49 (2010) 1730-1734
    [46]
    G. Tuci, L. Luconi, A. Rossin, E. Berretti, H. Ba, M. Innocenti, D. Yakhvarov, S. Caporali, C. Pham-Huu, G. Giambastiani, ACS Appl. Mater. Interfaces 8 (2016) 30099-30106
    [47]
    M.M. Kabat, A. Kurek, J. Wicha, J. Org. Chem. 48 (1983) 4248-4251
    [48]
    J.P.H. Li, M. Stockenhuber, Catal. Today 245 (2015) 108-115
    [49]
    B.M. Reddy, M.K. Patil, K.N. Rao, G.K. Reddy, J. Mol. Catal. A Chem. 258 (2006) 302-307
    [50]
    K. Ikeue, N. Miyoshi, T. Tanaka, M. Machida, Catal. Lett. 141 (2011) 877
    [51]
    V. Calvino-Casilda, M. Olejniczak, R. Maria Martin-Aranda, M. Ziolek, Micropor. Mesopor. Mater. 224 (2016) 201-207
    [52]
    R. Wirz, D. Ferri, A. Baiker, Langmuir 22 (2006) 3698-3706
    [53]
    K. Motokura, N. Viswanadham, G.M. Dhar, Y. Iwasawa, Catal. Today 141 (2009) 19-24
    [54]
    T. Seki, M. Onaka, J. Mol. Catal. A Chem. 263 (2007) 115-120
    [55]
    L. Wang, G. Xu, J. Xiao, M. Tao, W. Zhang, Ind. Eng. Chem. Res. 58 (2019) 12401-12410
    [56]
    B. Tamami, A. Fadavi, Iranian Polymer Journal 15 (2006) 331-339
    [57]
    M. Almasi, V. Zelenak, M.V. Opanasenko, J. Cejka, Catal Lett 148 (2018) 2263-2273
    [58]
    L. Song, C. Chen, X. Chen, N. Zhang, Chem. Res. Chin. Univ. 32 (2016) 838-842
    [59]
    X. Wu, B. Wang, Z. Yang, L. Chen, J. Mater. Chem. A 7 (2019) 5650-5655
    [60]
    P. Makowski, J. Weber, A. Thomas, F. Goettmann, Catal. Commun. 10 (2008) 243-247
    [61]
    X.-J. Zhang, N. Bian, L.-J. Mao, Q. Chen, L. Fang, A.-D. Qi, B.-H. Han, Mater. Chem. Phys. 213 (2012) 1575-1581
    [62]
    Y. Wang, L. Wang, C. Liu, R. Wang, ChemCatChem 7 (2015) 1559-1565
    [63]
    E. Kandasamy, S. Nagarajan, T.M. Shaikh, Lett. Org. Chem. 15 (2018) 133-138
    [64]
    P. Gogoi, K. Boruah, R. Borah, Chemistryselect 3 (2018) 9476-9483
    [65]
    F. Santamarta, P. Verdia, E. Tojo, Catal. Commun. 9 (2008) 1779-1781
    [66]
    J. Lu, P.H. Toy, Chem. Rev. 109 (2009) 815-838
    [67]
    Y. Ju, R.S. Varma, J. Org. Chem. 71 (2006) 135-141
    [68]
    P. Thapa, E. Corral, S. Sardar, B.S. Pierce, F.W. Foss, J. Org. Chem. 84 (2018) 1025-1034
    [69]
    R.S. Bitzer, L.C. Visentin, M. Horner, M.A.C. Nascimento, C.A.L. Filgueiras, Journal of Coordination Chemistry 70 (2017) 1089-1104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (130) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return