Haolan Tao, Cheng Lian, Honglai Liu. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy&Environment, 2020, 5(3): 303-321. doi: 10.1016/j.gee.2020.06.020
Citation: Haolan Tao, Cheng Lian, Honglai Liu. Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy&Environment, 2020, 5(3): 303-321. doi: 10.1016/j.gee.2020.06.020

Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport

doi: 10.1016/j.gee.2020.06.020
  • Understanding the mechanisms and properties of various transport processes in the electrolyte, porous electrode, and at the interface between electrode and electrolyte plays a crucial role in guiding the improvement of electrolytes, materials and microstructures of electrode. Nanoscale equilibrium properties and nonequilibrium ion transport are substantially different to that in the bulk, which are difficult to observe from experiments directly. In this paper, we introduce equilibrium and no-equilibrium thermodynamics for electrolyte in porous electrodes or electrolyte–electrode interface. The equilibrium properties of electrical double layer (EDL) including the EDL structure and capacitance are discussed. In addition, classical non-equilibrium thermodynamic theory is introduced to help us understand the coupling effect of different transport processes. We also review the recent studies of nonequilibrium ion transport in porous electrode by molecular and continuum methods, among these methods, dynamic density functional theory (DDFT) shows tremendous potential as its high efficiency and high accuracy. Moreover, some opportunities for future development and application of the non-equilibrium thermodynamics in electrochemical system are prospected.

     

  • loading
  • [1]
    Y. Li, Z.-Y. Fu, B.-L. Su, Adv. Funct. Mater. 22 (2012) 4634-4667.
    [2]
    K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril, P. Gomez-Romero, R.A. Fischer, Adv. Mater. 30 (2018) e1705789.
    [3]
    Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23 (2011) 4828-4850.
    [4]
    M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5 (2013) 72-88.
    [5]
    E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 366 (2019).
    [6]
    Q. Wang, J. Yan, Z. Fan, Energy Environ. Sci. 9 (2016) 729-762.
    [7]
    A. Burke, Electrochim. Acta 53 (2007) 1083-1091.
    [8]
    X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, science 341 (2013) 534-537.
    [9]
    Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Nat. Commun. 5 (2014) 1-8.
    [10]
    S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, J. Mater. Chem. 22 (2012) 767-784.
    [11]
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38 (2009) 2520-2531.
    [12]
    E. Frackowiak, F. Beguin, Carbon 39 (2001) 937-950.
    [13]
    H. Jiang, J. Ma, C. Li, Adv. Mater. 24 (2012) 4197-4202.
    [14]
    A. Balducci, R. Dugas, P.-L. Taberna, P. Simon, D. Plee, M. Mastragostino, S. Passerini, J. Power Sources 165 (2007) 922-927.
    [15]
    H.V. Helmholtz, Ann. Phys. 165 (1853) 353-377.
    [16]
    Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45 (2016) 5925-5950.
    [17]
    F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26 (2014) 2219-2251.
    [18]
    J. Wang, S. Kaskel, J. Mater. Chem. 22 (2012) 23710-23725.
    [19]
    A. Vu, Y. Qian, A. Stein, Advanced Energy Materials 2 (2012) 1056-1085.
    [20]
    Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, ACS Nano 4 (2010) 3187-3194.
    [21]
    H.J. Song, D.-S. Kim, J.-C. Kim, S.-H. Hong, D.-W. Kim, J. Mater. Chem. 5 (2017) 5502-5510.
    [22]
    L.E. Shea-Rohwer, J.E. Martin, X. Cai, D.F. Kelley, ECS Journal of Solid State Science and Technology 2 (2012) R3112.
    [23]
    D. Lei, J. Benson, A. Magasinski, G. Berdichevsky, G. Yushin, Science 355 (2017) 267-271.
    [24]
    F. Xu, L. Wu, Q. Meng, M. Kaltak, J. Huang, J.L. Durham, M. Fernandezserra, L. Sun, A.C. Marschilok, E.S. Takeuchi, Nat. Commun. 8 (2017) 15400.
    [25]
    S.L. Candelaria, Y.Y. Shao, W. Zhou, X.L. Li, J. Xiao, J.G. Zhang, Y. Wang, J. Liu, J.H. Li, G.Z. Cao, Nanomater. Energy 1 (2012) 195-220.
    [26]
    O.C. Compton, S.T. Nguyen, Small 6 (2010) 711-723.
    [27]
    F. Li, X. Jiang, J. Zhao, S. Zhang, Nanomater. Energy 16 (2015) 488-515.
    [28]
    B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nature Reviews Materials 2 (2017) 1-17.
    [29]
    J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 137 (2015) 1572-1580.
    [30]
    W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 8 (2015) 1837-1866.
    [31]
    J.-K. Sun, Q. Xu, Energy Environ. Sci. 7 (2014) 2071-2100.
    [32]
    P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Nat. Chem. 8 (2016) 718.
    [33]
    D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 16 (2017) 220-224.
    [34]
    Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang, X. Peng, Z. Lin, Nat. Commun. 8 (2017) 1-8.
    [35]
    H. Hu, Z. Zhao, Y. Gogotsi, J. Qiu, Environ. Sci. Technol. Lett. 1 (2014) 214-220.
    [36]
    Aikens, A. D, J. Chem. Educ. 60 (1983) 0-0.
    [37]
    J.Z. Wu, Z.D. Li, Annual Review of Physical Chemistry. Annual Reviews Palo Alto: 2007.
    [38]
    D.-E. Jiang, Z. Jin, D. Henderson, J. Wu, J. Phys. Chem. Lett. 3 (2012) 1727-1731.
    [39]
    D.-E. Jiang, J. Wu, Nanoscale 6 (2014) 5545-5550.
    [40]
    R. Evans, Adv. Phys. 28 (1979) 143-200.
    [41]
    R. Evans, M. Oettel, R. Roth, G. Kahl, J. Phys. Condens. Matter 28 (2016) 240401.
    [42]
    A. Haghmoradi, L. Wang, W.G. Chapman, J. Phys. Condens. Matter 28 (2016) 244009.
    [43]
    C. Lian, X. Chen, S. Zhao, W. Lv, X. Han, H. Wang, H. Liu, Macromol. Theory Simul. 23 (2014) 575-582.
    [44]
    D.-E. Jiang, J. Wu, J. Phys. Chem. Lett. 4 (2013) 1260-1267.
    [45]
    C. Lian, D.-E. Jiang, H. Liu, J. Wu, J. Phys. Chem. C 120 (2016) 8704-8710.
    [46]
    D.E. Jiang, M. Dong, W. Jianzhong, Chem. Phys. Lett. 504 (2011) 153-158.
    [47]
    D.-E. Jiang, Z. Jin, J. Wu, Nano Lett. 11 (2011) 5373-5377.
    [48]
    K. Ma, C. Lian, C.E. Woodward, B. Qin, Chem. Phys. Lett. 739 (2020) 137001.
    [49]
    C. Lian, X. Kong, H. Liu, J. Wu, J. Phys. Condens. Matter 28 (2016) 464008.
    [50]
    C. Lian, H. Liu, D. Henderson, J. Wu, J. Phys. Condens. Matter 28 (2016) 414005.
    [51]
    C. Lian, C. Zhan, D.-E. Jiang, H. Liu, J. Wu, J. Phys. Chem. C 121 (2017) 14010-14018.
    [52]
    H. Su, C. Lian, A. Gallegos, S. Deng, Y. Shang, H. Liu, J. Wu, Chem. Eng. Sci. 215 (2020) 115452.
    [53]
    C. Lian, H. Liu, C. Li, J. Wu, AIChE J. 65 (2019) 804-810.
    [54]
    C. Lian, H. Liu, J. Wu, J. Phys. Chem. C 122 (2018) 18304-18310.
    [55]
    C. Lian, K. Liu, K.L. Van Aken, Y. Gogotsi, D.J. Wesolowski, H. Liu, D. Jiang, J. Wu, ACS energy letters 1 (2016) 21-26.
    [56]
    C. Lian, H. Su, H. Liu, J. Wu, J. Phys. Chem. C 122 (2018) 14402-14407.
    [57]
    Y. Qiu, Y. Chen, J. Phys. Chem. C 119 (2015) 23813-23819.
    [58]
    G. Feng, R. Qiao, J. Huang, B.G. Sumpter, V. Meunier, ACS Nano 4 (2010) 2382-2390.
    [59]
    G. Feng, S. Li, W. Zhao, P.T. Cummings, AIChE J. 61 (2015) 3022-3028.
    [60]
    J.L. BañUelos, G. Feng, P.F. Fulvio, S. Li, G. Rother, S. Dai, P.T. Cummings, D.J. Wesolowski, Chem. Mater. 26 (2014) 1144-1153.
    [61]
    J.I. Siepmann, M. Sprik, J. Chem. Phys. 102 (1995) 511-524.
    [62]
    L. Pastewka, T.T. Jarvi, L. Mayrhofer, M. Moseler, Phys. Rev. B 83 (2011) 165418.
    [63]
    C. Merlet, C. Pean, B. Rotenberg, P.A. Madden, P. Simon, M. Salanne, J. Phys. Chem. Lett. 4 (2013) 264-268.
    [64]
    J.B. Haskins, J.W. Lawson, J. Chem. Phys. 144 (2016) 184707.
    [65]
    B.L. Bhargava, S. Balasubramanian, M.L. Klein, Chem. Commun. (2008) 3339-3351.
    [66]
    C. Merlet, M. Salanne, B. Rotenberg, P.A. Madden, J. Phys. Chem. C 115 (2011) 16613-16618.
    [67]
    Z. Liu, X. Wu, W. Wang, Phys. Chem. Chem. Phys. 8 (2006) 1096-1104.
    [68]
    N.M. Micaelo, A.M. Baptista, C.M. Soares, J. Phys. Chem. B 110 (2006) 14444-14451.
    [69]
    J. Vatamanu, O. Borodin, G.D. Smith, J. Am. Chem. Soc. 132 (2010) 14825-14833.
    [70]
    J.N.C. Lopes, A.a.H. Padua, Theoretical Chemistry Accounts 131 (2012) 1129.
    [71]
    K. Kiyohara, K. Asaka, J. Chem. Phys. 126 (2007) 214704.
    [72]
    K. Kiyohara, K. Asaka, J. Phys. Chem. C 111 (2007) 15903-15909.
    [73]
    S.R. Varanasi, S.K. Bhatia, J. Phys. Chem. C 119 (2015) 17573-17584.
    [74]
    S.R. Varanasi, A.H. Farmahini, S.K. Bhatia, J. Phys. Chem. C 119 (2015) 28809-28818.
    [75]
    M. Jitvisate†, J.R.T. Seddon, J. Phys. Chem. Lett. 9 (2018) 126-131.
    [76]
    M.V. Fedorov, A.A. Kornyshev, Chem. Rev. 114 (2014) 2978-3036.
    [77]
    M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Phys. Rev. Lett. 106 (2011) p.046102.046101-046102.046104.
    [78]
    A.A. Kornyshev, J. Phys. Chem. B 20 (2007) 5545-5557.
    [79]
    M. Zhou, A. Gallegos, K. Liu, S. Dai, J. Wu, Carbon 157 (2020) 147-152.
    [80]
    J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, J. Power Sources 451 (2020) 227794.
    [81]
    H. Sui, L. Li, X. Zhu, D. Chen, G. Wu, Chemosphere 144 (2016) 1950-1959.
    [82]
    P. Mccullagh, J.A. Nelder, Monographs on Statistics & Applied Probability second ed., Chapman and Hall/CRC, UK, 1989.
    [83]
    A.J. Smola, B. Scholkopf, Stat. Comput. 14 (2004) 199-222.
    [84]
    S. Zhu, J. Li, L. Ma, C. He, E. Liu, F. He, C. Shi, N. Zhao, Mater. Lett. 233 (2018) 294-297.
    [85]
    J.H. Lee, J. Shin, M.J. Realff, Comput. Chem. Eng. 114 (2017) 111-121.
    [86]
    M. Popescu, V.E. Balas, L. Perescupopescu, N.E. Mastorakis, WSEAS Transactions on Circuits and Systems archive 8 (2009) 579-588.
    [87]
    H. Su, S. Lin, S. Deng, C. Lian, Y. Shang, H. Liu, Nanoscale Advances 1 (2019) 2162-2166.
    [88]
    H. Su, C. Lian, J. Liu, H. Liu, Chem. Eng. Sci. 202 (2019) 186-193.
    [89]
    A.A. Franco, A. Rucci, D. Brandell, C. Frayret, M. Gaberscek, P. Jankowski, P. Johansson, Chem. Rev. 119 (2019) 4569-4627.
    [90]
    S. Pannala, J.A. Turner, S. Allu, W.R. Elwasif, S. Kalnaus, S. Simunovic, A. Kumar, J.J. Billings, H. Wang, J. Nanda, J. Appl. Phys. 118 (2015) 072017.
    [91]
    Y. Demirel, V. Gerbaud, in Nonequilibrium Thermodynamics (fourth ed.), eds. Demirel, Y.; Gerbaud, V., Elsevier, 2019, pp. 135-186.
    [92]
    P.B. Peters, R. Van Roij, M.Z. Bazant, P.M. Biesheuvel, Phys. Rev. 93 (2016) 053108.
    [93]
    D. Bohra, J.H. Chaudhry, T. Burdyny, E.A. Pidko, W.A. Smith, Energy Environ. Sci. 12 (2019) 382-386.
    [94]
    S.M. Chathoth, E. Mamontov, A.I. Kolesnikov, Y. Gogotsi, D.J. Wesolowski, Europhys. Lett. 95 (2011) 56001.
    [95]
    N.C. Osti, A. Cote, E. Mamontov, A.J. Ramirezcuesta, D.J. Wesolowski, S. Diallo, Chem. Phys. 465 (2016) 1-8.
    [96]
    D. Chung, N. Balke, S.V. Kalinin, R.E. Garcia, J. Electrochem. Soc. 158 (2011).
    [97]
    A.N. Morozovska, E.A. Eliseev, N. Balke, S.V. Kalinin, J. Appl. Phys. 108 (2010) 053712.
    [98]
    S. Jesse, N. Balke, E.A. Eliseev, A. Tselev, N.J. Dudney, A.N. Morozovska, S.V. Kalinin, ACS Nano 5 (2011) 9682-9695.
    [99]
    T.M. Fears, M. Doucet, J.F. Browning, J.K. Baldwin, J.G. Winiarz, H. Kaiser, H. Taub, R.L. Sacci, G.M. Veith, Phys. Chem. Chem. Phys. 18 (2016) 13927-13940.
    [100]
    S. Li, J.L. Banuelos, J. Guo, L.M. Anovitz, G. Rother, R.W. Shaw, P.C. Hillesheim, S. Dai, G.A. Baker, P.T. Cummings, J. Phys. Chem. Lett. 3 (2012) 125-130.
    [101]
    Z. Lin, P. Rozier, B. Duployer, P. Taberna, B. Anasori, Y. Gogotsi, P. Simon, Electrochem. Commun. 72 (2016) 50-53.
    [102]
    J.M. Black, G. Feng, P.F. Fulvio, P.C. Hillesheim, S. Dai, Y. Gogotsi, P.T. Cummings, S.V. Kalinin, N. Balke, Advanced Energy Materials 4 (2014) 1-8.
    [103]
    J.M. Black, M.B. Okatan, G. Feng, P.T. Cummings, N. Balke, Nanomater. Energy 15 (2015) 737-745.
    [104]
    J. Black, G. Feng, P.F. Fulvio, P.C. Hillesheim, S. Dai, Y. Gogotsi, P.T. Cummings, S.V. Kalinin, N. Balke, Advanced Energy Materials 4 (2014) 1300683.
    [105]
    J.L. Achtyl, I. Vlassiouk, S. Dai, F.M. Geiger, J. Phys. Chem. C 118 (2014) 17745-17755.
    [106]
    J.L. Achtyl, I. Vlassiouk, S.P. Surwade, P.F. Fulvio, S. Dai, F.M. Geiger, J. Phys. Chem. B 118 (2014) 7739-7749.
    [107]
    M. Deschamps, E. Gilbert, P. Azais, E. Raymundopinero, M.R. Ammar, P. Simon, D. Massiot, F. Beguin, Nat. Mater. 12 (2013) 351-358.
    [108]
    F. Blanc, M. Leskes, C.P. Grey, Acc. Chem. Res. 46 (2013) 1952-1963.
    [109]
    D. Lis, E.H.G. Backus, J. Hunger, S.H. Parekh, M. Bonn, Science 344 (2014) 1138-1142.
    [110]
    M. Janssen, E. Griffioen, P.M. Biesheuvel, R. Van Roij, B. Erne, Phys. Rev. Lett. 119 (2017) 166002.
    [111]
    B.L. Werkhoven, R. Van Roij, Soft Matter 16 (2020) 1527-1537.
    [112]
    R. Qiao, N.R. Aluru, Phys. Rev. Lett. 92 (2004) 198301.
    [113]
    O.N. Kalugin, V.V. Chaban, V.V. Loskutov, O.V. Prezhdo, Nano Lett. 8 (2008) 2126-2130.
    [114]
    J. Su, D. Huang, J. Phys. Chem. C 120 (2016) 11245-11252.
    [115]
    S. Delmerico, J.G. Mcdaniel, Carbon 161 (2020) 550-561.
    [116]
    S. Kondrat, P. Wu, R. Qiao, A.A. Kornyshev, Nat. Mater. 13 (2014) 387-393.
    [117]
    K. Breitsprecher, C. Holm, S. Kondrat, ACS Nano 12 (2018) 9733-9741.
    [118]
    T. Mo, S. Bi, Y. Zhang, V. Presser, X. Wang, Y. Gogotsi, G. Feng, ACS Nano 14 (2020) 2395-2403.
    [119]
    L. Fu, L. Joly, S. Merabia, Phys. Rev. Lett. 123 (2019) 138001.
    [120]
    H. Yoshida, S. Marbach, L. Bocquet, J. Chem. Phys. 146 (2017) 194702.
    [121]
    M.Z. Bazant, Acc. Chem. Res. 46 (2013) 1144-1160.
    [122]
    E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, J. Bohacek, Ionics 24 (2018) 2157-2165.
    [123]
    I. Sprague, P. Dutta, Electrochim. Acta 56 (2011) 4518-4525.
    [124]
    A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals & Applications, second ed., John Wiley & Sons, Inc., New York, 2001.
    [125]
    H. Tao, S. Lin, C. Lian, C. Li, H. Liu, Chem. Eng. Sci. 212 (2020) 115354.
    [126]
    M. Dietzel, S. Hardt, Phys. Rev. Lett. 116 (2016) 225901.
    [127]
    M. Janssen, M. Bier, Phys. Rev. 99 (2019) 042136.
    [128]
    R.F. Stout, A.S. Khair, Phys. Rev. 96 (2017) 022604.
    [129]
    M. Janssen, R. Van Roij, Phys. Rev. Lett. 118 (2017) 096001.
    [130]
    J. Schiffer, D. Linzen, D.U. Sauer, J. Power Sources 160 (2006) 765-772.
    [131]
    M. Bonetti, S. Nakamae, B.T. Huang, T.J. Salez, C. Wiertel-Gasquet, M. Roger, J. Chem. Phys. 142 (2015) 244708.
    [132]
    S. Suter, S. Haussener, Energy Environ. Sci. 12 (2019) 1668-1678.
    [133]
    M. Mirzadeh, F. Gibou, T.M. Squires, Phys. Rev. Lett. 113 (2014) 097701.
    [134]
    J. Lyklema, Fundamentals of Interface and Colloid Science: Solid-liquid Interfaces first ed., Academic Press, London, 1995.
    [135]
    A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, J. Am. Chem. Soc. 138 (2016) 5731-5744.
    [136]
    A. Uysal, H. Zhou, G. Feng, S.S. Lee, S. Li, P.T. Cummings, P.F. Fulvio, S. Dai, J.K. Mcdonough, Y. Gogotsi, J. Phys. Condens. Matter 27 (2015) 032101.
    [137]
    G. Wang, W. Brown, M. Kvetny, Current Opinion in Electrochemistry 13 (2019) 112-118.
    [138]
    C. Pean, C. Merlet, B. Rotenberg, P.A. Madden, P.L. Taberna, B. Daffos, M. Salanne, P. Simon, ACS Nano 8 (2014) 1576-1583.
    [139]
    J. Jiang, D. Cao, D. Jiang, J. Wu, J. Phys. Chem. Lett. 5 (2014) 2195-2200.
    [140]
    C. Lian, S. Zhao, H. Liu, J. Wu, J. Chem. Phys. 145 (2016) 204707.
    [141]
    C. Lian, M. Janssen, H. Liu, R. Van Roij, Phys. Rev. Lett. 124 (2020) 076001.
    [142]
    C. Lian, H. Su, C. Li, H. Liu, J. Wu, ACS Nano 13 (2019) 8185-8192.
    [143]
    C. Lian, X. Kong, H. Liu, J. Wu, Phys. Chem. Chem. Phys. 21 (2019) 6970-6975.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (260) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return