Citation: | Yu Zhang, Chao Li, Xianfu Liu, Jing Xu, Xingkun Yang, Zhang Zhang. Facile γ-ray irradiation synthesis of Pt/GA nanocomposite for catalytic reduction of 4-nitrophenol. Green Energy&Environment, 2021, 6(5): 734-742. doi: 10.1016/j.gee.2020.06.016 |
Up to now, facile and pollution-free routes for catalyst preparation are in high demand. In this study, a green and cost-effective strategy was successfully developed to construct platinum/graphene aerogel (Pt/GA) nanocomposites by the co-reduction of graphene oxides (GO) and chloroplatinic acid (H2PtCl6·6H2O) with the assists of γ-ray irradiation in the absence of any other reductants. Characterization studies indicated that the energy of γ-ray irradiation and the hole scavenger isopropanol (IPA) played a vital role in forming small Pt nanoparticles with uniform size of ∼3 nm on the surface of graphene aerogel (GA). Furthermore, Pt/GA synthesized with a mass ratio of 2:1 (Pt/GA-2) exhibited a lowest activation energy value and outstanding catalytic properties for the reduction of 4-nitrophenol (4-NP). The excellent catalytic and cycling performance suggest that Pt/GA-2 catalyst has a promising prospect for the reduction of nitroaromatic compounds in wastewater treatment and other industrial applications.
[1] |
N. K. R. Bogireddy, P. Sahare, U. Pal, S. F. O. Mendez, L. M. Gomez, V. Agarwal, Chem. Eng. J., 388(2020) 124237.
|
[2] |
S. J. Hoseini, M. Bahrami, N. Sadri, N. Aramesh, Z. S. Fard, H. R. Iran, B. H. Agahi, M. Maddahfar, M. Dehghani, A. Z. B. Arabi, N. Heidari, S. F. H. Fard, Z. Moradi, J. Colloid Interf. Sci., 513(2018) 602-616.
|
[3] |
Z. S. Lv, X. Y. Zhu, H. B. Meng, J. J. Feng, A. J. Wang, J. Colloid. Interf. Sci., 538(2019) 349-356.
|
[4] |
M. M. Ayada, W. A. Amer, M. G. Kotp, Mol. Catal., 439(2017) 72-80.
|
[5] |
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, B. J.van Wees, Nature, 448(2007) 571-574.
|
[6] |
R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science, 297(2002) 787-792.
|
[7] |
W. W. Su, R. Sun, F. F. Ren, Y. F. Yao, Z. H. Fei, H. W. Wang, Z. T. Liu, R. Xing, Y. K. Du, Appl. Surf. Sci., 2019(491) 735-741.
|
[8] |
P. Song, L. L. He, A. J. Wang, L. P. Mei, S. X. Zhong, J. R. Chen, J. J. Feng, J. Mater. Chem. A, 3(2015) 5321-5327.
|
[9] |
X. F. Zhang, X. Y. Zhu, J. J. Feng, A. J. Wang, Appl. Surf. Sci., 428(2018) 798-808.
|
[10] |
J. J. Lv, A. J. Wang, X. H. Ma, R. Y. Xiang, J. R. Chen, J. J. Feng, J. Mater. Chem. A, 3(2015) 290-296.
|
[11] |
X. Y. Zhu, Z. S. Lv, J. J. Feng, P. X. Yuan, L. Zhang, J. R. Chen, A. J. Wang, J. Colloid Interf. Sci., 516(2018) 355-363.
|
[12] |
Z. Zhang, C. Yang, S. S. Wu, A. N. Wang, L. L. Zhao, D. D. Zhai, B. Ren, K. Z. Cao, Z. Zhou, Adv. Energy Mater., 2018, 1802805.
|
[13] |
C. Li, J. Balamurugan, T. D. Thanh, N. H. Kim, J. H. Lee, J. Mater. Chem. A, 5(2017) 397-408.
|
[14] |
C. Li, J. Balamurugan, N. H. Kim, J. H. Lee, Adv. Energy Mater., 8(2018) 1702014.
|
[15] |
M. J. Pan, J. N. Wang, W. Z. Fu, B. X. Chen, J. Q. Lei, W. Y. Chen, X. Z. Duan, D. Chen, G. Qian, X. G. Zhou, Green Energy and Environment, 5(2020) 76-82.
|
[16] |
Y. C. Li, J. W. Zhou, T. B. Zhang, T. S. Wang, X. L. li, Y. F. Jia, J. L. Cheng, Q. Guan, E. Z. Liu, H. S. Peng, B. Wang, Adv. Funct. Mater., 29(2019) 1808117.
|
[17] |
M. L. Lu, J. H. Li, L. F. Li, J. Lin, J. Y. Li, Nanotubes and Carbon Nanostructures, 28(2020) 425-434.
|
[18] |
J. Li, J. Li, H. Meng, S. Xie, B. Zhang, L. Li, H. Ma, J. Zhang, M. Yu, J. Mater. Chem. A, 2(2014) 2934-2941.
|
[19] |
Zhen Liu, A. A. Abdelhafiz, Y. C. Jiang, C. Qu, I. Chang, J. H. Zeng, S. J. Liao, F. M. Alamgir, Mater. Chem. Phys., 225(2019) 371-378.
|
[20] |
C. Fan, Z. H. Huang, X. Y. Hu, Z. P. Shi, T. Y. Shen, Y. W. Tang, X. J. Wang, L. Xu, Green Energy and Environment, 3(2018) 310-317.
|
[21] |
Y. Zhang, L. B. Xiao, K. Z. Xu, J. R. Song, F. Q. Zhao, RSC Adv., 6(2016) 42428-42434.
|
[22] |
H. F. Zhang, J. B. Zhang, K. H. Liu, Y. Q. Zhu, X. Y. Qiu, D. M. Sun, Y. W. Tang, Green Energy and Environment, 4(2019) 245-253.
|
[23] |
Y. L. Wu, X. Y. Duan, Z. S. Li, S. H. Xu, Y. X. Xie, Y. F. Lai, S. Lin, Catalysts, 8(2018), 465.
|
[24] |
T. Zhan, W. B. Liu, J. J. Teng, C. C. Yue, D. H. Li, S. H. Wang, H. Tan, Chem. Commun., 55(2019) 2620-2623.
|
[25] |
Z. W. Lu, X. C. Xu, Y. J. Chen, X. H. Wang, L. Sun, K. L. Zhuo, Green Energy and Environment, 5(2020) 69-75.
|
[26] |
M. P. Browne, F. Novotny, D. Bousa, Z. Sofer, M. Pumera, ACS Sustain. Chem. Eng., 7(2019) 11721-11727.
|
[27] |
P. C. Rath, D. Saikia, M. Mishra, H. M. Kao, Appl. Surf. Sci., 427(2018) 1217-1226.
|
[28] |
F. Najafi, M. Rajabi, Int. Nano Lett., 5(2015) 187-190.
|
[29] |
Y. C. Jiang, Z. Liu, J. L. Song, I. Chang, J. H. Zeng, Green Energy and Environment, 3(2018) 360-367
|
[30] |
M. Rakap, S. Ozkar, Cataly. Today, 183(2012) 17-25.
|
[31] |
Y. F. Zhang, Y. Xia, S. S.Yan, J. Han, Y. F. Chen, W. Z. Zhai, Z. N. Gao, Dalton Trans., 47(2018) 17461-17468.
|
[32] |
L. G. Dou, H. Zhang, J. Mater. Chem. A, 4(2016) 18990-19002.
|
[33] |
T. Zou, Y. Han, X. X. Li, W. Li, J. L. Zhang, Y. Fu, Colloid. Surface. A, 560(2019) 344-351.
|
[34] |
Y. Gao, Y. Zhang, Y. Zhou, C. Zhang, H. Zhang, S. Zhao, J. Fang, M. Huang, X. Sheng, J. Colloid Interf. Sci., 503(2017) 178-185.
|
[35] |
W. C. Ye, J. Yu, Y. X. Zhou, D. Q. Gao, D. A. Wang, C. M. Wang, D. S. Xue, Appl. Catal. B:Environ., 181(2016) 371-378.
|
[36] |
X. Yang, Y. Li, P. Zhang, R. Zhou, H. Peng, D. Liu, J. Gui, ACS Appl. Mater. Inter., 10(2018) 23154-23162.
|
[37] |
S. P. Dubey, A. D. Dwivedi, I. C. Kim, M. Sillanpaa, Y. N. Kwon, C. Lee, Chem. Eng. J., 244(2014) 160-167.
|