Volume 6 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Xinming Du, Hongyu Zhang, Yongjiang Yuan, Zhe Wang. Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride). Green Energy&Environment, 2021, 6(5): 743-750. doi: 10.1016/j.gee.2020.06.015
Citation: Xinming Du, Hongyu Zhang, Yongjiang Yuan, Zhe Wang. Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride). Green Energy&Environment, 2021, 6(5): 743-750. doi: 10.1016/j.gee.2020.06.015

Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride)

doi: 10.1016/j.gee.2020.06.015
  • The semi-interpenetrating network anion exchange membranes (AEMs) based on quaternized polyvinyl alcohol (QPVA) and poly(diallyldimethylammonium chloride) (PDDA) are synthesized. The chemical cross-linking structure is formed between hydroxyl groups of QPVA and aldehyde groups of glutaraldehyde (GA), which makes PDDA more stable embed in the QPVA matrix and also improves the mechanical properties and dimensional stability of AEMs. Due to the phase separation phenomenon of AEMs swelling in water, a microporous structure may be formed in the membrane, which reduces the transmission resistance of hydroxide ions and provides a larger space for the transfer of hydroxide ions, thus improving the conductivity. The ring structure of PDDA is introduced as a cationic group to transfer hydroxide ions, and shields the nucleophilic attack of the hydroxide ions through the steric hindrance effect, which improves alkaline stability. The hydroxide conductivity of semi-interpenetrating network membrane (QPVA/PDDA0.5-GA) is 36.5 mS cm-1 at 60℃. And the membrane of QPVA/PDDA0.5-GA exhibits excellent mechanical property with maximum tensile strength of 19.6 MPa. After immersing into hot 3 mol L-1 NaOH solutions at 60℃ for 300 h, the OH- conductivity remains 78% of its initial value. The semi-interpenetrating network AEMs with microporous structure exhibit good ionic conductivity, mechanical strength and alkaline durability.

     

  • loading
  • [1]
    Y. Wang, D.Y. Zhang, X. Liang, M.A. Shehzad, X.L. Xiao, Y. Zhu, X.L. Ge, J.J. Zhang, Z.J. Ge, L. Wu, T.W. Xu, J. Memb. Sci 595(2020) 117483.
    [2]
    J. Ran, L. Ding, C.Q. Chu, X. Liang, T. Pan, D.B. Yu, T.W. Xu, J. Mater. Chem. A 6(2018) 17101-17110.
    [3]
    L. Wang, Z.R. Liu, Y. Liu, L. Wang, J. Memb. Sci 583(2019) 110-117.
    [4]
    J. Pan, C. Chen, Y. Li, L. Wang, L.S. Tan, G.W. Li, X. Tang, L. Xiao, J.T. Lu, L. Zhuang, Energy Environ. Sci 7(2014) 354-360.
    [5]
    J.J. Zhang, Y.B. He, X. Liang, X.L. Ge, Y. Zhu, M. Hu, Z.J. Yang, L. Wu, T.W. Xu, Sci China Mater 62(2019) 973-981.
    [6]
    J.D. Xue, L. Liu, J.Y. Liao, Y.H. Shen, N.W. Li, J. Mater. Chem. A 6(2018) 11317-11326.
    [7]
    M.L. Fang, D. Liu, S. Neelakandan, M.Z. Xu, D.Q. Liu, L. Wang, Appl. Surf. Sci. 493(2019) 1306-1316.
    [8]
    M.L. Fang, D. Liu, M.S. Hu, L. Wang, Chem. J. Chinese U, 41(2020) 365-374.
    [9]
    N.J. Chen, C.R. Lu, Y.X. Li, C. Long, Z.M. Li, H. Zhu, J. Memb. Sci 588(2019) 117120.
    [10]
    D. Liu, M.Z. Xu, M.L. Fang, J.L. Chen, L. Wang, J. Mater. Chem. A 6(2018) 10879-10890.
    [11]
    X.M. Chu, L. Liu, Y.D. Huang, M.D. Guiver, N.W. Li, J. Memb. Sci 578(2019) 239-250.
    [12]
    Q. Yang, L. Li, C.X. Lin, X.L. Gao, C.H. Zhao, Q.G. Zhang, A.M. Zhu, Q.L. Liu, J. Memb. Sci 560(2018) 77-86.
    [13]
    X. Wang, W.B. Sheng, Y.H. Shen, L. Liu, S. Dai, N.W. Li, J. Memb. Sci 587(2019) 117135.
    [14]
    Z.J. Yang, R. Guo, R. Malpass-Evans, M. Carta, N.B. Mckeown, M.D. Guiver, L. Wu, T.W. Xu, Angew. Chem. Int. Ed. 55(2016) 11499-11502.
    [15]
    C. Hu, Q.G. Zhang, C.X. Lin, Z. Lin, L. Li, F. Soyekwo, A.M. Zhu, Q.L. Liu, J. Mater. Chem. A 6(2018) 13302-13311.
    [16]
    Z. Li, W.Y. Wang, Y.J. Chen, C.Y. Xiong, G.W. He, Y. Cao, H. Wu, M.D. Guiver, Z.Y. Jiang, J. Mater. Chem. A 4(2016) 2340-2348.
    [17]
    L. Qiao, H.M. Zhang, W.J. Lu, C.H. Xiao, Q. Fu, X.F. Li, I.F.J. Vankelecom, Nano Energy 54(2018) 73-81.
    [18]
    Y.J. Ma, L. Li, L.L. Ma, N.A. Qaisrani, S.T. Gong, P.Y. Li, F.X. Zhang, G.H. He, J. Memb. Sci 586(2019) 98-105.
    [19]
    J.W. Peng, M.H. Liang, Z.C. Liu, P. Wang, C.Y. Shi, W. Hu, B.J. Liu, Chem. Commun. 56(2020) 928-931.
    [20]
    X.L. Gao, Q. Yang, H.Y. Wu, Q.H. Sun, Z.Y. Zhu, Q.G. Zhang, A.M. Zhu, Q.L. Liu, J. Memb. Sci 589(2019) 117247.
    [21]
    S. Sung, T.S. Mayadevi, J.E. Chae, H.J. Kim, T.H. Kim, J. Ind. Eng. Chem. 81(2020) 124-134.
    [22]
    U. Salma, D.S. Zhang, Y. Nagao, Chemistryselect 5(2020) 1255-1263.
    [23]
    B.C. Lin, F. Xu, Y. Su, J.J. Han, Z.J. Zhu, F.Q. Chu, Y.R. Ren, L. Zhu, J.N. Ding, ACS Appl. Energy Mater. 3(2020) 1089-1098.
    [24]
    B.C. Lin, F. Xu, F.Q. Chu, Y.R. Ren, J.N. Ding, F. Yan, J. Mater. Chem. A 7(2019) 13275-13283.
    [25]
    C.Y. Wang, Z.W. Tao, X.Y. Zhao, J. Li, Q. Ren, Sci China Mater 63(2020) 533-543.
    [26]
    T.Y. Zhu, Y. Sha, H.A. Firouzjaie, X. Peng, Y.J. Cha, D. Dissanayake, M.D. Smith, A.K. Vannucci, W.E. Mustain, C.B. Tang, J. Am. Chem. Soc. 142(2020) 1083-1089.
    [27]
    J.Y. Chu, K.H. Lee, A.R. Kim, D.J. Yoo, ACS Sustainable Chem. Eng. 7(2019) 20077-20087.
    [28]
    A. Allushi, T.H. Pham, J.S. Olsson, P. Jannasch, J. Mater. Chem. A 7(2019) 27164-27174.
    [29]
    R. Gan, Y. Ma, S. Li, F. Zhang, G. He, J. Energy Chem. 27(2018) 1189-1197.
    [30]
    N. Shaari, S.K. Kamarudin, Z. Zakaria, Int. J. Energy Res 43(2019) 5252-5265.
    [31]
    Y. Hu, W.C. Tsen, F.S. Chuang, S.C. Jang, B. Zhang, G. Zheng, S. Wen, H. Liu, C.Q. Qin, C.L. Gong, Carbohydr. Polym 213(2019) 320-328.
    [32]
    X. Han, J.L. Wang, L.L. Wang, J. Appl. Polym. Sci 136(2019) 47395.
    [33]
    D. Herranz, R. Escudero-Cid, M. Montiel, C. Palacio, E. Fatas, P. Ocon, Renewable Energy 127(2018) 883-895.
    [34]
    C.L. Gong, S.J. Zhao, W.C. Tsen, F.Q. Hu, F. Zhong, B.Q. Zhang, H. Liu, G.W. Zheng, C.Q. Qin, S. Wen, J. Power Sources 441(2019) 227176.
    [35]
    Z. Zakaria, S.K. Kamarudin, J. Appl. Polym. Sci 136(2019) 47526.
    [36]
    G.Y. Tian, L. Liu, Q.H. Meng, B. Cao, Desalination 354(2014) 107-115.
    [37]
    Z. Zakaria, S.K. Kamarudin, S.N. Timmiati, Nanoscale Res. Lett 14(2019) 28.
    [38]
    Y.A. Wei, M. Wang, N.N. Xu, L.W. Peng, J.F. Mao, Q.J. Gong, J.L. Qiao, ACS Appl. Mater. Interfaces 10(2018) 29593-29598.
    [39]
    T. Zhou, M. Wang, X. He, J. Qiao, J Materiomics 5(2019) 286-295.
    [40]
    J. Chen, D.F. Wei, W.L. Gong, A.N. Zheng, Y. Guan, ACS Appl. Mater. Interfaces 10(2018) 37535-37543.
    [41]
    X.C. Jiang, Y.J. Sun, H.X. Zhang, L.X. Hou, Carbohydr. Polym 180(2018) 96-103.
    [42]
    X.C. Hu, R. Muchakayala, S.H. Song, J.W. Wang, J.J. Chen, M.L. Tan, Int. J. Hydrogen Energy 43(2018) 3741-3749.
    [43]
    Z.J. Yang, J. Ran, B. Wu, L. Wu, T.W. Xu, Curr. Opin. Chem. Eng 12(2016) 22-30.
    [44]
    J.S. Olsson, T.H. Pham, P. Jannasch, Macromolecules 50(2017) 2784-2793.
    [45]
    T.S. Mayadevi, S. Sung, J.E. Chae, H.J. Kim, T.H. Kim, Int. J. Hydrogen Energy 44(2019) 18403-18414.
    [46]
    D. Wang, Y.F. Wang, J.L. Wang, L.L. Wang, Polymer 170(2019) 31-42.
    [47]
    A.M. Samsudin, V. Hacker, Polymers 11(2019) 1399.
    [48]
    H. Takaba, T. Hisabe, T. Shimizu, M.K. Alam, J. Memb. Sci 522(2017) 237-244.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (154) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return